Introduction 00000 Model 0000

Data

 $\begin{array}{c} \mathsf{Identification}/\mathsf{Estimation} \\ \texttt{0000000000} \end{array}$

Results 000000 Policy 00000000000

Balancing Production and Carbon Emissions with Fuel Substitution

Emmanuel Murray Leclair

University of Western Ontario

November 27, 2023

Introduction	Data	Model	Identification/Estimation	Results	Policy
0000	00	0000	000000000	000000	00000000

Manufacturing: 37% of Global GHG Emissions (Worell et al., 2009)

Key issue: fossil fuel combustion in production

▶ Worse in coal-reliant economies like India and energy-intensive industries like Steel

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	0000	000000000	000000	00000

Manufacturing: 37% of Global GHG Emissions (Worell et al., 2009)

Key issue: fossil fuel combustion in production

- ► Worse in coal-reliant economies like India and energy-intensive industries like Steel
- Leading policy responses increase fuel cost: carbon tax
 - Reduction in emissions

(Andresson 2019; Ahmadi and Yamazaki 2020; Alpino, Citino and Frigo 2023)

 Cost pass-through and reduction in production (Gittens 2019; Ganapati, Shapiro and Walker 2020; Fontagné, Martin and Orefice 2023)

Introduction	Data	Model	Identification/Estimation	Results
0000	00	0000	000000000	000000

Manufacturing: 37% of Global GHG Emissions (Worell et al., 2009)

Key issue: fossil fuel combustion in production

- ▶ Worse in coal-reliant economies like India and energy-intensive industries like Steel
- Leading policy responses increase fuel cost: carbon tax
 - Reduction in emissions

(Andresson 2019; Ahmadi and Yamazaki 2020; Alpino, Citino and Frigo 2023)

 Cost pass-through and reduction in production (Gittens 2019; Ganapati, Shapiro and Walker 2020; Fontagné, Martin and Orefice 2023)

▶ Important: growth concerns can explains lack of carbon tax in India (Jack 2017)

How cost-effective are leading carbon policies at reducing emissions? Are there winners and losers?

This Paper: Firm Responses in Novel Dynamic Production Model

Use fuels to produce energy. Produce output using energy, along with other inputs.

This Paper: Firm Responses in Novel Dynamic Production Model

Use fuels to produce energy. Produce output using energy, along with other inputs.

Novelty: heterogeneity in ability and incentives of firms to use different fuels

- 1. Dynamic switching between fuel sets $\mathcal{F} \subseteq \{$ oil, electricity, natural gas, coal $\}$
- 2. Heterogeneity across firms' ability to convert fuels to energy (Examples)

This Paper: Firm Responses in Novel Dynamic Production Model

Use fuels to produce energy. Produce output using energy, along with other inputs.

Novelty: heterogeneity in ability and incentives of firms to use different fuels

- 1. Dynamic switching between fuel sets $\mathcal{F} \subseteq \{$ oil, electricity, natural gas, coal $\}$
- 2. Heterogeneity across firms' ability to convert fuels to energy (Examples)

I estimate model with rich panel of Indian manufacturing establishments (2009-2016)

- ► Key challenge: multidimensional unobserved heterogeneity (fuel productivity)
- Tractable estimation in four stages (Ganapati, Shapiro and Walker 2020; Grieco, Li and Zhang 2016; Zhang 2019; Arcidiacono and Jones 2003)

Quantify trade-off of policies: carbon tax on fossil fuels, cleaner fuel subsidy

Policy 000000000000

How do Firms Respond to Increase in Fuel Cost?

- 1. Intensive margin: flexible fuel substitution within fuel set
- 2. Extensive margin: costly switching between fuel sets across periods
- 3. Scale: pass-through to consumers and reduce output

Policy 000000000000

How do Firms Respond to Increase in Fuel Cost?

- 1. Intensive margin: flexible fuel substitution within fuel set
- 2. Extensive margin: costly switching between fuel sets across periods
- 3. Scale: pass-through to consumers and reduce output

Role of heterogeneity in fuel productivity: use more of most productive fuels

- 1. High fuel productivity, less willing to substitute: higher ↑ marginal cost, higher pass-through (more exposed)
- 2. Output reallocates towards less exposed plants who become more competitive

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	0000	000000000	000000	00000000000

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	0000	000000000	000000	00000000

- 1. Reallocation of output from dirty to cleaner plants
 - Harms high coal productivity plants (\$\productive\$) but benefits high natural gas & electricity productivity plants (\$\productive\$)

Introduction	Data	Model	Identification/Estimation	Results
00000	00	0000	000000000	000000

- 1. Reallocation of output from dirty to cleaner plants
 - Harms high coal productivity plants (\$\productive\$) but benefits high natural gas & electricity productivity plants (\$\productive\$)
- 2. Output recomposition critical to reduce emissions because of technology lock-in
 - Large emitters: no transition away from coal (fixed costs of transition, comparative advantage at coal)

Introduction	Data	Model	Identification/Estimation	Results
00000	00	0000	000000000	000000

- 1. Reallocation of output from dirty to cleaner plants
 - Harms high coal productivity plants (\$\productive\$) but benefits high natural gas & electricity productivity plants (\$\productive\$)
- 2. Output recomposition critical to reduce emissions because of technology lock-in
 - Large emitters: no transition away from coal (fixed costs of transition, comparative advantage at coal)
- 3. No heterogeneity in fuel productivity: overestimate private cost of carbon tax
 - 2x more output loss for 50% emissions reduction

- 1. Reallocation of output from dirty to cleaner plants
 - Harms high coal productivity plants (\$\productive\$) but benefits high natural gas & electricity productivity plants (\$\productive\$)
- 2. Output recomposition critical to reduce emissions because of technology lock-in
 - Large emitters: no transition away from coal (fixed costs of transition, comparative advantage at coal)
- 3. No heterogeneity in fuel productivity: overestimate private cost of carbon tax
 - ► 2x more output loss for 50% emissions reduction

Reallocation of output consistent with empirical literature (Alpino, Citino and Frigo 2023, Dussaux 2021, Najjar and Cherniwchan 2023)

Literature and Contribution

- 1. Fuel substitution in manufacturing (Hyland and Haller 2018, Wang and Lin 2017, Stern 2012, Ma et al. 2008, Pindyck 1979, Fuss 1977)
 - ► Novel channels capturing firms' response to changes in fuel cost (• Details)
 - $1.1\,$ Inter-temporal switching between fuel sets
 - 1.2 Heterogeneity fuel productivity

Literature and Contribution

- 1. Fuel substitution in manufacturing (Hyland and Haller 2018, Wang and Lin 2017, Stern 2012, Ma et al. 2008, Pindyck 1979, Fuss 1977)
 - ► Novel channels capturing firms' response to changes in fuel cost (Details)
 - $1.1\,$ Inter-temporal switching between fuel sets
 - 1.2 Heterogeneity fuel productivity
- 2. Literature on carbon policy in manufacturing (Ganapati, Shapiro and Walker 2020, Shapiro and Walker 2018, Fowlie, Reguant and Ryan 2016, Ryan 2012)
 - Novel channels have important quantitative implications for carbon policy (Details)

Literature and Contribution

- 1. Fuel substitution in manufacturing (Hyland and Haller 2018, Wang and Lin 2017, Stern 2012, Ma et al. 2008, Pindyck 1979, Fuss 1977)
 - ► Novel channels capturing firms' response to changes in fuel cost (• Details)
 - $1.1\,$ Inter-temporal switching between fuel sets
 - 1.2 Heterogeneity fuel productivity
- 2. Literature on carbon policy in manufacturing (Ganapati, Shapiro and Walker 2020, Shapiro and Walker 2018, Fowlie, Reguant and Ryan 2016, Ryan 2012)
 - Novel channels have important quantitative implications for carbon policy (Details)
- Production function estimation (Olley and Pakes 1996; Blundell and Bond, 2000; Levinsohn and Petrin 2003; Ackerberg, Caves and Frazer 2015; Grieco, Li and Zhang 2016; Zhang 2019; Gandhi, Navarro and Rivers, 2020; Demirer, 2020)
 - 4-stages estimation technique can be applied to other settings

Policy 00000000000

Data: Indian Survey of Industries (ASI) 2009-2016

- Annual panel of Indian manufacturing establishments
- Establishment-level data on prices and quantities for all inputs and outputs
- Energy inputs: Coal, Oil, Electricity and Natural Gas
 - Price and quantities: heating potential in mmBtu
 - Emissions (schedule 1 and 2): One mmBtu of each fuel releases some amount of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O)
 - I convert these three pollutants to carbon dioxide equivalent (CO_{2e}) using the Global Warming Potential method (GWP).
- Today: Steel
 - ▶ Highly polluting industry (70% of fuel usage in coal): scope for reducing emissions

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	0.	0000	000000000	000000	00000

Plants Producing Steel use Different Fuel Sets and Often Switch

Percentage (%) of establishments in different fuel sets

	Steel
Oil, Electricity	51.3
Oil, Electricity, Coal	19.3
Oil, Electricity, Gas	10.8
Oil, Electricity, Coal, Gas	7.4
Other	11.1

Significant proportion of plants add or drop a fuel at least once

	Adds New Fuel	Drop Existing Fuel	Both Add and Drop
Yes (%)	39.4	39.6	26.0

Switching by year Switching by Fuel Number of Fuels and Productivity

Introduction 00000 Model ●000

Data 00 Identification/Estimation

Results 000000 Policy 000000000000

Model

Introduction D 00000 0	o Model	Identification/ 00000000		oooo
---------------------------	---------	-----------------------------	--	------

Production Model

1. Outer Production (plant i at time t):

$$Y_{it} = z_{it} \Bigg[\left(\alpha_K \big(\underbrace{K_{it}}_{\mathsf{Capital}}\big)^{\frac{\sigma-1}{\sigma}} + \alpha_L \big(\underbrace{L_{it}}_{\mathsf{Labor}}\big)^{\frac{\sigma-1}{\sigma}} + \alpha_M \big(\underbrace{M_{it}}_{\mathsf{Materials}}\big)^{\frac{\sigma-1}{\sigma}} + \alpha_E \big(\underbrace{E_{it}}_{\mathsf{Energy}}\big)^{\frac{\sigma-1}{\sigma}} \Bigg]^{\eta}$$

Policy

Introduction 00000	Data oo	Model 0000	Identification/Estimation	Results 000000	
-----------------------	------------	---------------	---------------------------	-------------------	--

Production Model

1. Outer Production (plant i at time t):

$$Y_{it} = z_{it} \left[\left(\alpha_K \left(\underbrace{K_{it}}_{\mathsf{Capital}}\right)^{\frac{\sigma-1}{\sigma}} + \alpha_L \left(\underbrace{L_{it}}_{\mathsf{Labor}}\right)^{\frac{\sigma-1}{\sigma}} + \alpha_M \left(\underbrace{M_{it}}_{\mathsf{Materials}}\right)^{\frac{\sigma-1}{\sigma}} + \alpha_E \left(\underbrace{E_{it}}_{\mathsf{Capital}}\right)^{\frac{\sigma-1}{\sigma}} \right]^{\eta} \right]^{\eta}$$

2. Inner Energy Production given a fuel set \mathcal{F}_{it}

$$E_{it} = \left(\sum_{f \in \mathcal{F}_{it}} \left(\psi_{fit} e_{fit}\right)^{\frac{\lambda-1}{\lambda}}\right)^{\frac{\lambda}{\lambda-1}} \quad \mathcal{F}_{it} \subseteq \{\text{Oil, Elec, Gas, Coal}\}$$

Key innovation:

- 1. plant-by-year productivity ψ_{fit} : different incentives to substitute across firms
- 2. More substitution possibilities when \mathcal{F}_{it} is larger (option value)

Results 000000

Policy 00000000000

Production Decisions: (1) Within-Period (Static Profits)

Maximize profits taking input prices & productivities (s_{it}) and fuel set \mathcal{F}_{it} as given

$$\pi(s_{it}, \mathcal{F}_{it}) = \max_{M_{it}, L_{it}, \{e_{fit}\}_{f \in \mathcal{F}_{it}}} \left\{ P_{it}(Y_{it})Y_{it} - w_t L_{it} - p_{mit}M_{it} - \sum_{f \in \mathcal{F}_{it}} p_{fit}e_{fit} \right\}$$

- Technological constraint Y_{it}
- **Demand constraint** $P_{it}(Y_{it})$ (monopolistic competition with demand elasticity ρ)

Results 000000

Policy 00000000000

Production Decisions: (1) Within-Period (Static Profits)

Maximize profits taking input prices & productivities (s_{it}) and fuel set \mathcal{F}_{it} as given

$$\pi(s_{it}, \mathcal{F}_{it}) = \max_{M_{it}, L_{it}, \{e_{fit}\}_{f \in \mathcal{F}_{it}}} \left\{ P_{it}(Y_{it})Y_{it} - w_t L_{it} - p_{mit}M_{it} - \sum_{f \in \mathcal{F}_{it}} p_{fit}e_{fit} \right\}$$

- Technological constraint Y_{it}
- **Demand constraint** $P_{it}(Y_{it})$ (monopolistic competition with demand elasticity ρ)

Can be separated in two optimization problems (leverage for estimation)

- 1. Minimize cost to produce energy with fuels \rightarrow endogenous price of energy $p_{E_{it}}$
- 2. Maximize profits using energy as an input

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	000●		000000	000000000000

Production Decisions: (2) Inter-temporal Fuel Set Choices

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \Big\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \Big\}$$

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	oo	000●		000000	0000000000

Production Decisions: (2) Inter-temporal Fuel Set Choices

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \Big\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \Big\}$$

1. Plants face price & productivity (s_{it}) uncertainty

$$\mathbb{E}(\ln s_{it+1} \mid \mathcal{I}_{it}) = (1 - \rho_s)(\mu_0^s + \mu_t^s + \mu_i^s) + \rho_s \ln s_{it}$$

States s_{it} : fuel prices and productivity ($\{p_{fit}, \psi_{fit}\}_{f \in \mathbb{F}}$), material prices (p_{mit}), productivity (z_{it}), location and year.

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	○○○●		000000	00000000000

Production Decisions: (2) Inter-temporal Fuel Set Choices

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \Big\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \Big\}$$

1. Plants face price & productivity (s_{it}) uncertainty

$$\mathbb{E}(\ln s_{it+1} \mid \mathcal{I}_{it}) = (1 - \rho_s)(\mu_0^s + \mu_t^s + \mu_i^s) + \rho_s \ln s_{it}$$

- States s_{it}: fuel prices and productivity ({p_{fit}, ψ_{fit}}_{f∈F}), material prices (p_{mit}), productivity (z_{it}), location and year.
- 2. Fixed cost to add fuel and salvage value from dropping fuel
 - Vary with productivity z_{it} and access to natural gas pipeline network

Introduction

Model

Data

Identification/Estimation

Results

Policy 00000000000

Identification/Estimation

Identification and Estimation in Four Separate Stages

Goal: Recover everything (demand and production parameters, fuel productivity, switching costs)

- 1. Demand estimation: shift-share instrument exploiting shocks to fuel prices (Ganapati, Shapiro and Walker 2020)
- 2. Outer production function: I allow for unobserved quantity E_{it} and price $p_{E_{it}}$ of energy (Grieco, Li and Zhang 2019)
- 3. Energy production function: Fuel productivity ψ_{fit} for fuels that plants are using (Zhang 2019)
- 4. Inter-temporal switching: Distribution of fuel productivity for fuels that plants are not using jointly with switching costs

(Arcidiacono and Jones 2003)

Introduction Data Model 00000 00 0000

 $\begin{array}{c} \mathsf{Identification}/\mathsf{Estimation} \\ \texttt{000000000} \end{array}$

Results 000000 Policy 000000000000

Stage 1: Demand Estimation (ρ)

Plant i in year t

$$\ln Y_{it} = \Lambda_t - \rho \ln P_{it} + \epsilon_{it}$$

Due to simultaneity, I create a shift-share instrument for output prices that affects marginal cost following Ganapati et al. (2020)

$$z_{rt} = \Big[\overline{p}_{-r,t,f} \ast \sigma_{r,2008,f}\Big], \quad f \in \{\text{coal, gas, oil}\}$$

1. Shift $\overline{p}_{-r,t,f}$: average price of fuel f in year t across all but own state 2. Share $\sigma_{r,2008,f}$: pre-sample share of fuel f used to generate electricity in state r

Introduction	Data	Model	Identification/Estimation
00000	00	0000	000000000

Results 000000 Policy 000000000000

Stage 2: Outer Production Function

$$Y_{it} = z_{it} \left[\left(\alpha_K (K_{it})^{\frac{\sigma-1}{\sigma}} + \alpha_L (L_{it})^{\frac{\sigma-1}{\sigma}} + \alpha_M (M_{it})^{\frac{\sigma-1}{\sigma}} + \alpha_E (\underbrace{E_{it}}_{\text{Energy - unobserved}})^{\frac{\sigma-1}{\sigma}} \right]^{\eta} \right]^{\eta}$$

Issues:

- 1. One of the input is unobserved E_{it}
- 2. Productivity z_{it} is correlated with input choices (bias parameter estimates)

Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	0000	000000000	000000	0000

Stage 2: Outer Production Function

FOC labor:
$$z_{it} = f(L_{it}, S_{L_{it}}, K_{it}, S_{E_{it}}, S_{M_{it}}; \theta)$$

Stage 2: Outer Production Function

FOC labor:
$$z_{it} = f(L_{it}, S_{L_{it}}, K_{it}, S_{E_{it}}, S_{M_{it}}; \theta)$$

Substitute E_{it} and z_{it} into revenue to get estimating equation (Grieco, Li and Zhang 2016)

$$\ln R_{it} = \underbrace{\ln \frac{\rho}{\rho - 1}}_{\text{demand elasticity: known}} + \ln \frac{1}{\eta} + \ln \left(S_{Lit} \left(1 + \frac{\alpha_k}{\alpha_L} \left(\frac{K_{it}}{L_{it}} \right)^{\frac{\sigma - 1}{\sigma}} \right) + S_{Mit} + S_{Eit} \right) + \underbrace{u_{it}}_{\text{Measurement error}}$$

Consistency with demand

Stage 2: Outer Production Function

FOC labor:
$$z_{it} = f(L_{it}, S_{L_{it}}, K_{it}, S_{E_{it}}, S_{M_{it}}; \theta)$$

Substitute E_{it} and z_{it} into revenue to get estimating equation (Grieco, Li and Zhang 2016)

$$\ln R_{it} = \ln \frac{\rho}{\rho - 1} + \ln \frac{1}{\eta} + \ln \left(S_{Lit} \left(1 + \frac{\alpha_k}{\alpha_L} \left(\frac{K_{it}}{L_{it}} \right)^{\frac{\sigma - 1}{\sigma}} \right) + S_{Mit} + S_{Eit} \right) + \underbrace{u_{it}}_{\text{Measurement error}}$$

Stage 3: Energy Production Function (Now that \hat{E}_{it} is Observed)

1. Normalize fuel productivity relative to electricity

$$\begin{split} \hat{E}_{it} &= \Big(\sum_{f \in \mathcal{F}_{it}} \left(\psi_{fit} e_{fit}\right)^{\frac{\lambda-1}{\lambda}} \Big)^{\frac{\lambda}{\lambda-1}} \\ &= \psi_{eit} \Big(\sum_{f \in \mathcal{F}_{it}} \left(\tilde{\psi}_{fit} e_{fit}\right)^{\frac{\lambda-1}{\lambda}} \Big)^{\frac{\lambda}{\lambda-1}} \quad \text{where} \quad \tilde{\psi}_{fit} \equiv \underbrace{\psi_{fit}/\psi_{eit}}_{\text{Relative fuel productivity}} \end{split}$$

Stage 3: Energy Production Function (Now that E_{it} is Observed)

1. Normalize fuel productivity relative to electricity

$$\begin{split} \hat{E}_{it} &= \Big(\sum_{f \in \mathcal{F}_{it}} \left(\psi_{fit} e_{fit}\right)^{\frac{\lambda-1}{\lambda}}\Big)^{\frac{\lambda}{\lambda-1}} \\ &= \psi_{eit} \Big(\sum_{f \in \mathcal{F}_{it}} \left(\tilde{\psi}_{fit} e_{fit}\right)^{\frac{\lambda-1}{\lambda}}\Big)^{\frac{\lambda}{\lambda-1}} \quad \text{where} \quad \tilde{\psi}_{fit} \equiv \underbrace{\psi_{fit}/\psi_{eit}}_{\text{Relative fuel productivity}} \end{split}$$

2. Exploit FOC of cost-minimization to produce energy

Stage 3: Energy Production Function (Now that E_{it} is Observed)

Substitute relative fuel productivity into energy production function (similar to Zhang 2019)

- Only one unobservable left $(\ln \psi_{eit})$: can use standard methods
 - \blacktriangleright AR(1) for $\ln\psi_{eit}$ (Gandhi, Navarro and Rivers 2020) and lagged fuel prices as instruments
 - Estimating equation is canonical linear dynamic panel (Blundell and Bond 1998)

Introduction	Data	Model	Identification/Estimation
00000	00	0000	0000000000

Result:

Policy 000000000000

Production Function Estimation Results

Production Functior Parameters	Average Revenue Elasticities		
Returns to scale $\hat{\eta}$	1.19 [1.18,1.20]	Labor	0.030 [0.03,0.032]
Outer substitution elasticity $\hat{\sigma}$	1.87 [0.9,2.85]	Capital	0.016 [0.01,0.024]
Fuel substitution elasticity $\hat{\lambda}$	2.22 [1.5,3.25]	Materials	0.745 [0.74,0.75]
Demand Elasticity $\hat{\rho}$	4.20 [2.79,5.68]	Energy	0.12 [0.113,0.12]
"Effective" returns to scale	0.91 [0.89,0.91]		

- 1. Fuels are more substitutable among each others than energy with other inputs
- 2. Elasticity of energy larger than labor and capital: Energy matters for steel

Introduction	Data	Model	Identification/Estimation
00000	00	0000	000000000

Results 000000 Policy 000000000000

Stage 4: Dynamic Discrete Choice

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \left\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \right\}$$

Stage 4: Dynamic Discrete Choice

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \Big\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \Big\}$$

Fixed switching cost function $\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta)$

• Add gas:
$$\kappa_g + \kappa \ln z_{it} + \lambda_g \mathbb{I}(\text{no pipeline})$$

- **b** Drop gas: $\gamma_g + \gamma \ln z_{it}$
- Add coal: $\kappa_c + \kappa \ln z_{it}$
- **b** Drop coal: $\gamma_c + \gamma \ln z_{it}$

Stage 4: Dynamic Discrete Choice

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \left\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \right\}$$

Uncertainty over future states s_{it+1} . plants forecast using AR(1) with correlated shocks (Farmer and Akiro Toda, 2017)

- Fuel productivity over prices $\psi_{fit}/p_{fit} \quad \forall f \in \mathbb{F}$
- Price of intermediate materias p_{mit}
- Hicks-neutral productivity z_{it}

Introduction 00000	Data 00	Model	Identification/Estimation	Results 000000	Policy
-----------------------	------------	-------	---------------------------	-------------------	--------

Stage 4: Dynamic Discrete Choice

$$V(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{\mathcal{F}'} \left\{ \underbrace{\pi(\mathbf{s}_{it}, \mathcal{F}_{it})}_{\text{period profits}} - \underbrace{\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta) + \sigma_{\epsilon} \epsilon_{\mathcal{F}'it}}_{\text{fixed switching costs}} + \underbrace{\beta \mathbb{E}[V(\mathbf{s}_{it+1}, \mathcal{F}') \mid s_{it}]}_{\text{continuation value}} \right\}$$

 $\epsilon_{\mathcal{F}'it}:$ Type-1 extreme value shock to choice-specific switching cost

Choice probabilities take logit form

$$\frac{e^{\left(\upsilon_{\mathcal{F}'}(s_{it},\mathcal{F}_{it};\theta)\right)}}{\sum_{\mathcal{F}\in\mathbb{F}}e^{\left(\upsilon_{\mathcal{F}}(s_{it},\mathcal{F}_{it};\theta)\right)}}$$

To estimate switching costs, need to solve the model under all possible fuel sets How to predict fuel productivity for fuels that plants have never used? • switching cost matrix (• assumptions states)

Policy 00000000000

Fuel Productivity for Fuels that Plants have Never Used

Assumption: plant systematic differences in fuel productivity (comparative advantage): $\mu_i^f \quad \forall f \in \mathbb{F}$

- ▶ Plants know about μ_i^f which guides their fuel set choices
- Researcher doesn't observe μ_i^f (similar to Roy model)
- Treat comparative advantage as unobserved types in dynamic discrete choice model
- Estimate distribution of unobserved typs jointly with switching costs in full info likelihood following Arcidiacono and Jones (2003)
 - Expectation-Maximum algorithm where you recursively iterate between distribution of switching costs and distribution of unobserved types

Policy

Distribution of Expected Fuel Productivity (Gas and Coal) $\mathbb{E}(\psi_{fit} \mid \mathcal{F}) \quad \forall \mathcal{F} \subseteq \mathbb{F}$



1. Plants who do not use coal would be 60% less productive at it

2. Plants who do not use gas would be 20% less productive at it

Introduction Data Model

Identification/Estimation 000000000

Results 000000 Policy 000000000000

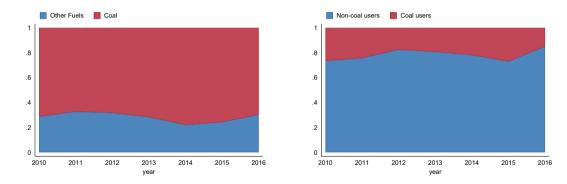
Fixed Switching Costs

		Fixed Costs (Million USD)	Salvage Values (Million USD)	
Natural Gas	Pipeline Access	line Access 28.83		
Natural Gas	No Pipeline Access	40.46	15.12	
	Coal	28.82	8.33	
Total Factor Productivity (100 % increase)		0.82	0.25	
Observations		2,3	393	

- ► Fixed costs economically significant: for gas, 6x median and 2x average revenues.
- ► Fixed costs are 2-3 times larger than salvage values
- ► Gas fixed costs 50% larger for plans without access to pipeline

Introduction Dat 00000 00	a Model				olicy ooooooooc
------------------------------	---------	--	--	--	--------------------

Concentration of Energy in high Coal Productivity, low TFP Plants



Yearly Aggregate Fuel Quantities (mmBtu)

Yearly Aggregate Output

Introduction	Data	Model	Identification/Estimati
00000	00	0000	0000000000

Results Provide Evidence for Technology Lock-in

Combining the two previous results points towards technology lock-in, especially for large coal users located in *Steel Belt*

- ▶ No access to natural gas pipeline (fixed costs averaging \$40 Million USD)
- ▶ Too productive at coal relative to other fuels to justify dropping it
- Would not be productive enough overall and at natural gas to justify adoption

Introduction	Data	Model	Identification/Estimation
00000	00	0000	000000000

Model Fit – Distribution of Fuel Sets

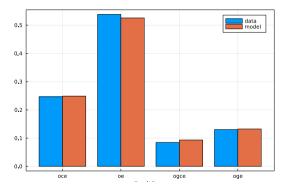


Figure: Unconditional distribution of fuel sets, model vs. data (N = 2,393)

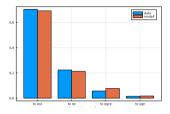
Introduction	Data	Model
00000	00	0000

Identification/Estimation

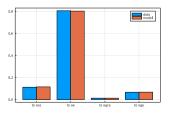
Results

Policy

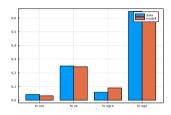
Model Fit - Fuel Set Transitions



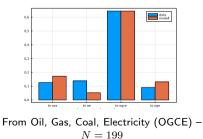
From Oil,Coal,Electricity (OCE) – N = 572



From Oil, Electricity (OE) – N = 1,342



From Oil, Gas, Electricity (OGE) – N = 280



Introduction 00000 Model 0000

Data

Identification/Estimation

Results 000000 Policy ●0000000000

Policy

Identification/Estimation 000000000

Results 000000 Policy 0000000000

Policy Counterfactuals: Carbon Tax

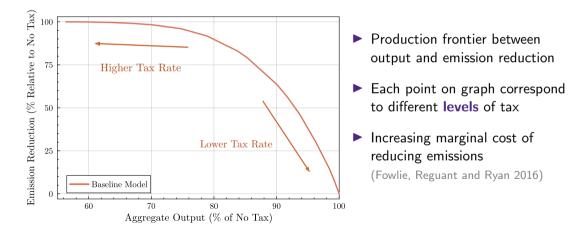
- Per-unit fuel tax where relative tax rate proportional to fuel's emission intensity.
- ► Trace out trade-off between output and emission reduction for various tax levels
- I simulate the economy with and without the tax for 40 years and compare net present value of outcomes along entire path

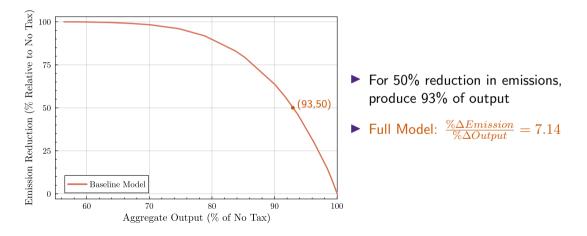
$$\mathbb{E}(X(\tau)) \approx \frac{1}{S} \frac{1}{40} \sum_{s=1}^{S} \sum_{t=0}^{40} \beta^t X_{ts}(\tau)$$

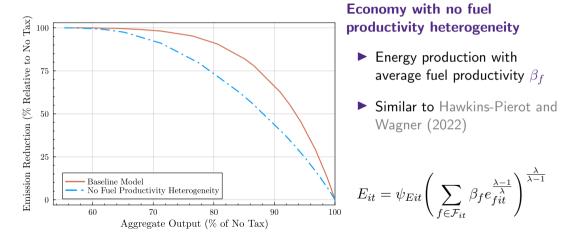
 $X = \{ aggregate output, aggregate emissions \}$

Fuel	Average Price (Rupees)	Emission Factor (Kg $CO_{2e}/mmBtu$)
Coal	262	100
Oil	665	82
Electricity	1,681	65
Natural Gas	1,307	60

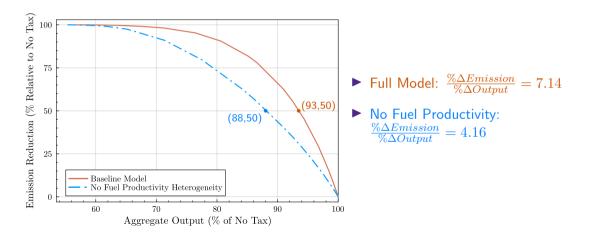
Introduction	Data	Model	Identification/Estimation	Results	Policy
00000	00	0000	000000000	000000	00000







Introduction 00000	Data 00	Model	Identification/Estimation	Results 000000	Policy oo●oooooooo



Policy Results - Why Heterogeneity in Fuel Productivity Matters

- Carbon tax raises price of coal and oil relative to electricity and gas
- Envelope theorem: elasticity of energy price with respect to relative fuel prices increasing in relative fuel productivity
 - Counter-intuitive
- Plants relatively more productive at coal (big polluters)

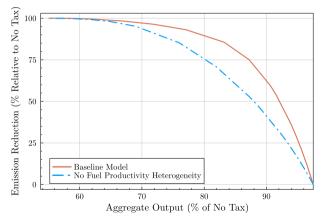
Policy Results - Why Heterogeneity in Fuel Productivity Matters

- Carbon tax raises price of coal and oil relative to electricity and gas
- Envelope theorem: elasticity of energy price with respect to relative fuel prices increasing in relative fuel productivity
 - Counter-intuitive
- Plants relatively more productive at coal (big polluters)
 - 1. Higher elasticity (more exposed to tax)
 - 2. Higher increase in marginal cost
 - 3. Higher pass-through of tax to output price
- Reallocation of demand shifts industry output from high to low elasticity plants: benefits cleaner plants at expense of dirty plants

Policy

Introduction 00000	Data oo	Model	Identification/Estimation	Results 000000	Policy ○○○○●○○○○○○
-----------------------	------------	-------	---------------------------	-------------------	-----------------------

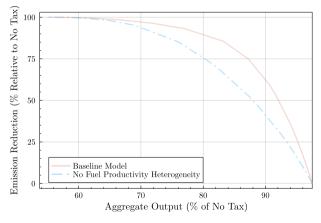
Policy Results – Extent of Reallocation Depends on Demand Elasticity (ρ)



Effect of Doubling Elasticity of Demand ρ

Introduction 00000	Data oo	Model	Identification/Estimation	Results 000000	Policy ○○○○●○○○○○○
-----------------------	------------	-------	---------------------------	-------------------	-----------------------

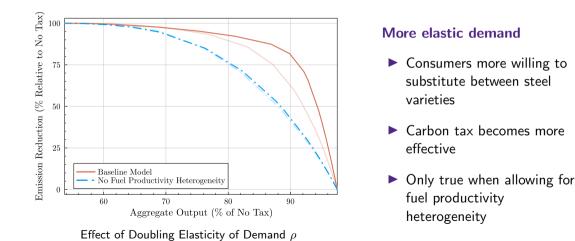
Policy Results – Extent of Reallocation Depends on Demand Elasticity (ρ)



Effect of Doubling Elasticity of Demand ρ

Introduction 00000	Data oo	Model	Identification/Estimation	Results 000000	Policy ○○○○●○○○○○○
-----------------------	------------	-------	---------------------------	-------------------	-----------------------

Policy Results – Extent of Reallocation Depends on Demand Elasticity (ρ)



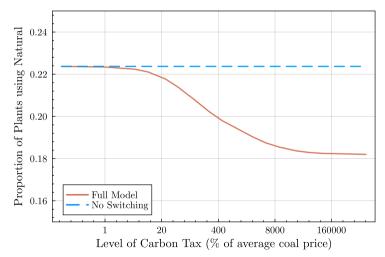
Results 000000 Policy 00000000000

This Result is Consistent with Empirical Literature

- Recent empirical literature studying the effect of European Energy Crisis (2x natural gas prices, 1.5x electricity prices) (Fontagne, Martin, Orefice 2023; Moll, Schularick and Zachmann 2023; Dussaux 2021; Alpino, Citino and Frigo 2023)
 - 1. Energy-intensive firms increased their output prices more than other firms (Alpino, Citino and Frigo 2023)
 - 2. Rise in energy prices triggered a reallocation of production and workers from energy-intensive to energy-efficient firms (Dussaux 2021)

Najjar and Cherniwchan (2021) show that reallocation of output across plants explains 50% of canadian manufacturing clean-up in small particular matter

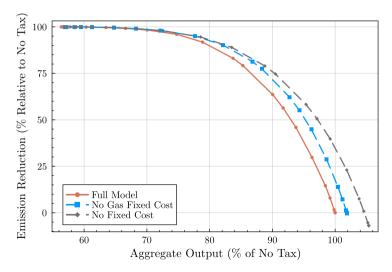
Beyond Output Recomposition – Carbon Tax does not Increase Gas Adoption



Introduction	Data	Model	Identification/Estimation	R
00000	00	0000	000000000	0

Results 000000 Policy 00000000000000

Fixed Costs Increase Output Cost of Emission Reduction



Introduction 00000	Data oo	Model	Identification/Estimation	Results 000000	Policy 00000000●00
-----------------------	------------	-------	---------------------------	-------------------	-----------------------

Alleviating Technology Lock-in – Subsidy Towards Natural Gas Adoption

Permanent 10% subsidy (4 million per adoption) together with carbon tax (SCC at $\$51/tCO_{2e})$

- ▶ Fraction of plants utilizing natural gas from 0.19 to 0.24: not large coal users
- ► Over 90% of subsidy goes towards plants who would add natural gas in absence of subsidy (40 year horizon) → free riders
- Emissions goes up together with output due to option value of new fuel
 - Plants do not drop coal to keep option value

Overall cost is substantial (\$2.7 billion), but minimal welfare effect (0.003%)

on Data Model oo ooo Policy oooooooooooooo

Conclusion

- Developed a novel dynamic production model of fuel choices.
- Estimate the model with Indian Steel manufacturing plants.
- I find that heterogeneity in ability and incentives to substitute is important to understand how firms respond to changes in fuel costs
- Using novel channels, I quantify the production cost of emission reduction induced by carbon tax.
 - 1. Heterogeneity in fuel productivity reduces trade-off
 - 2. Fixed Costs increase trade-off
- I show that subsidizing natural gas adoption is ineffective at reducing emissions compared to carbon tax

Introduction 00000

Data

Model 0000 Identification/Estimation

Results

Policy 0000000000

Thank You!

emurrayl@uwo.ca

Source of Heterogeneity in Fuel Productivity – Examples

...Across fuel types:

Steel technologies: Electric-arc furnaces (electricity, natural gas) are more productive than coal furnaces at using physical units (heating potential) of the underlying fuels (Worrell, Blinde, Neelis, Blomen and Masanet 2010).

...Within fuel types

 Unobserved fuel quality: for example, high grade coal (Anthracite, Bituminous) has a higher energy content for a given physical unit relative to lower grade coal (Lignite, Sub-Bituminous)

...Energy retrofit

Heterogeneity on how efficiently agents use the heating potential of fuels (Christensen, Francisco and Myers 2022).

Contribution to Literature on Fuel Substitution

Wang and Lin (2017) Stern (2012), Ma et al. 2008, Pindyck (1979) Fuss (1977)

- Translog production function to estimate partial substitution elasticities
- Some papers (e.g. Hyland and Haller, 2018) recover aggregate elasticities, but no story as to why they differ
- Some papers going back to Joskow and Mishkin (1977) allow for discrete choice between fuel sets: no dynamic switching and not within production function.

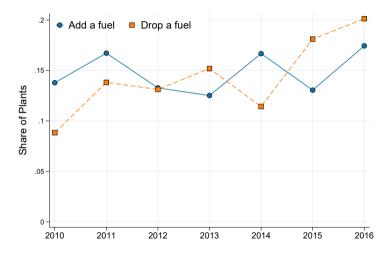
Contribution: Heterogeneity in fuel productivity, dynamic switching between fuel sets

- 1. Reallocation in production induced by heterogeneous exposure to price change \rightarrow aggregate substitution elasticities differ from individual ones
- 2. Technology lock-in

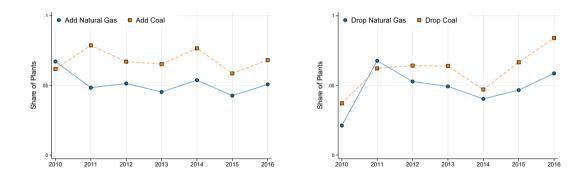
Contribution to Literature on Carbon Policy in Manufacturing

- Structural models tend to overestimate output cost of carbon tax (Fowlie, Reguant and Ryan 2016, Ryan 2012)
- Literature on tax incidence captures heterogeneity between producers and consumers (Ganapati, Shapiro and Walker 2020)
 - I show that there is significant heterogeneity within producers based on exposure variation
- Literature technology lock-in quite similar but does not allow for fuel substitution (Hawkins-Pierot and Wagner, 2022)
 - Fuel substitution helps understand whether technology lock-in is driven by large investment costs vs. lack of incentives to substitute
 - Fuel productivity explains selection of firms into technologies

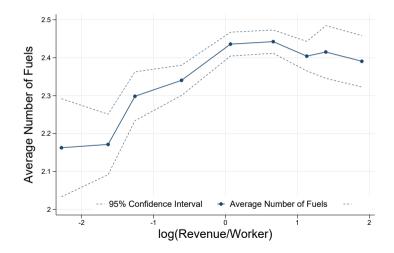
Fuel Switching by Year



Fuel Switching by Year and Fuels



Number of Fuels and Productivity



Static Production Decisions in Two Stages: (1) Cost-Minimization

$$\min_{\{e_{fit}\}_{f\in\mathcal{F}_{it}}} \left\{ \sum_{f\in\mathcal{F}_{it}} p_{fit}e_{fit} \right\} \quad s.t. \quad \tilde{E}_{it} = \left(\sum_{f\in\mathcal{F}_{it}} (\psi_{fit}\tilde{e}_{fit})^{\frac{\lambda-1}{\lambda}} \right)^{\frac{\lambda}{\lambda-1}}$$

The achieved minimum of this problem is an energy cost function $C(\tilde{E}_{it})$ that satisfies:

$$\mathcal{C}(\tilde{E}_{it}) = \left(\sum_{f \in \mathcal{F}_{it}} \left(\frac{\tilde{p}_{fit}}{\psi_{fit}}\right)^{1-\lambda}\right)^{\frac{1}{1-\lambda}} \tilde{E}_{it}$$
$$= p_{\tilde{E}_{it}} \tilde{E}_{it} = \sum_{f \in \mathcal{F}_{it}} p_{fit} e_{fit}$$

Static Production Decisions in Two Stages: (1) Profit-Maximization

$$\pi(\mathbf{s}_{it}, \mathcal{F}_{it}) = \max_{K_{it}, M_{it}, L_{it}, E_{it}} \left\{ \left(\frac{e^{\Gamma_t}}{N_t} \right)^{\frac{1}{\rho}} P_t^{\frac{1+\rho(\theta-1)}{(\theta-1)\rho}} Y_{it}^{\frac{\rho-1}{\rho}} - w_t L_{it} - r_{kt} K_{it} - p_{mit} M_{it} - p_{Eit} E_{it} \right\}$$

s.t. $\tilde{Y}_{it} = z_{it} \left[\alpha_K \tilde{K}_{it}^{\frac{\sigma-1}{\sigma}} + \alpha_L \tilde{L}_{it}^{\frac{\sigma-1}{\sigma}} + \alpha_M \tilde{M}_{it}^{\frac{\sigma-1}{\sigma}} + \alpha_E \tilde{E}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\eta\sigma}{\sigma-1}}$

Price of Energy Captures all Novel Channels of Heterogeneity

$$p_{E_{it}} = \left(\sum_{f \in \mathcal{F}_{it}} \left(p_{fit}/\psi_{fit}\right)^{1-\lambda}\right)^{\frac{1}{1-\lambda}}$$

- 1. Fuel set \mathcal{F}_{it} : larger fuel sets lowers $p_{E_{it}}$ (option value)
- 2. Fuel productivity ψ_{fit} : higher fuel productivity lowers $p_{E_{it}}$
- 3. Fuel prices p_{fit} : higher fuel prices lower $p_{E_{it}}$

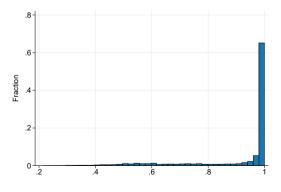
Construction of Output Price

Output price is weighted average of products sold

$$P_{it} = \sum_{k} s_{kit} P_{kit}$$

• s_{kit} : sales share of product k.

- Most plants produce a single product
- Multiprod plants have dominant product



Sales Share of Main Product by Plant-Year

Elasticity of Demand – Results and Robustness

	Baseline	Lagged fuel expenditures as share		
Elasticity of Demand $\hat{\rho}$	-4.201*** (0.894)	-4.669 ⁺ (2.695)	-4.016* (1.851)	-3.089** (0.942)
Year FE	Y	Y	Y	Y
Region \times Year FE			Y	
State × Year FE				Y
N	8,517	4,088	4,088	4088

Standard errors in parentheses

 $^+$ p<0.10 , * p<0.05 , ** p<0.01 , *** p<0.001

Normalization of the CES Around Geometric Mean

Following Grieco, Li and Zhang (2016), I explicitely normalize the CES production function around the geometric mean of each variable $\overline{X} = \left(\prod_{i=1}^{n} \prod_{t=1}^{T} X_{it}\right)^{\frac{1}{nT}}$ to estimate the production function:

$$\frac{Y_{it}}{\overline{Y}} = z_{it} \left(\alpha_K \left(\frac{K_{it}}{\overline{K}} \right)^{\frac{\sigma-1}{\sigma}} + \alpha_L \left(\frac{L_{it}}{\overline{L}} \right)^{\frac{\sigma-1}{\sigma}} + \alpha_M \left(\frac{M_{it}}{\overline{M}} \right)^{\frac{\sigma-1}{\sigma}} + \alpha_E \left(\frac{E_{it}}{\overline{E}} \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\eta\sigma}{\sigma-1}}$$

s.t. $\alpha_L + \alpha_K + \alpha_M + \alpha_E = 1$

Consistency Between Demand and Production Function

Quantity observed:
$$\ln Y_{it} = \underbrace{\ln Q_{it}}_{\text{true quantity}} + \underbrace{\omega_{it}}_{\text{quantity measurement error}}$$

Demand equation:

 $\ln Y_{it} = \Lambda_t - \rho \ln P_{it} + \underbrace{e_{it}}_{\text{ex-post demand shock}} + \omega_{it}$

$$= \Lambda_t - \rho \ln P_{it} + \epsilon_{it}$$

Then, observed revenue is: $\ln R_{it} = \ln(P_{it}Y_{it}) = \ln(P_{it}Q_{it}) + u_{it}$

Can allow for measurement error in prices as well ($\omega_{it} \neq u_{it}$)

Details: Identification of inner production function

$$\ln \psi_{eit} = (1 - \rho_{\psi_e})(\mu_0^{\psi_e} + \mu_i^{\psi_e}) + \mu_t^{\psi_e} - \rho_{\psi_e}\mu_{t-1}^{\psi_e} + \rho_{\psi_e} \ln \psi_{eit-1} + \epsilon_{it}^{\psi_e}$$

Using AR(1) for $\ln \psi_{eit}$, rearrange value added energy production function:

$$\underbrace{\frac{\ln \tilde{E}_{it} - \ln e_{eit}}{y_{it}}}_{y_{it}} = \Gamma_t + \rho_{\psi_e} \underbrace{\left(\ln \tilde{E}_{it-1} - \ln e_{eit-1} \right)}_{y_{it-1}} + \frac{\lambda}{\lambda - 1} \underbrace{\left(\ln \frac{\sum_{f \in \mathcal{F}_{it}} s_{fit}}{s_{eit}} - \rho_{\psi_e} \ln \frac{\sum_{f \in \mathcal{F}_{it-1}} s_{fit-1}}{s_{eit-1}} \right)}_{x_{it}} + \mu_i^* + \epsilon_{it}^{\psi_e}$$

canonical form with common parameter restrictions:

$$y_{it} = \Gamma_t + \rho y_{it-1} + \beta_1 x_{it} - \beta_2 x_{it-1} + \mu_i^* + \epsilon_{it}$$
 s.t. $\beta_2 = \rho \beta_1$

Details: Identification of inner production function

$$\ln \psi_{eit} = (1 - \rho_{\psi_e})(\mu_0^{\psi_e} + \mu_i^{\psi_e}) + \mu_t^{\psi_e} - \rho_{\psi_e}\mu_{t-1}^{\psi_e} + \rho_{\psi_e}\ln\psi_{eit-1} + \epsilon_{it}^{\psi_e}$$

Using AR(1) for $\ln \psi_{eit}$, rearrange value added energy production function:

$$\begin{aligned} \ln \tilde{E}_{it} - \ln e_{eit} &= \Gamma_t + \rho_{\psi_e} (\ln \tilde{E}_{it-1} - \ln e_{eit-1}) \\ &+ \frac{\lambda}{\lambda - 1} \Big(\ln \frac{\sum_{f \in \mathcal{F}_{it}} s_{fit}}{s_{eit}} - \rho_{\psi_e} \ln \frac{\sum_{f \in \mathcal{F}_{it-1}} s_{fit-1}}{s_{eit-1}} \Big) + \mu_i^* + \epsilon_{it}^{\psi_e} \end{aligned}$$

Lagged dependent variable $(\ln \tilde{E}_{it-1} - \ln e_{eit-1})$ correlated with fixed effect (μ_i^*) : system GMM from Blundell and Bond (1998)

Details: Identification of inner production function

$$\ln \psi_{eit} = (1 - \rho_{\psi_e})(\mu_0^{\psi_e} + \mu_i^{\psi_e}) + \mu_t^{\psi_e} - \rho_{\psi_e}\mu_{t-1}^{\psi_e} + \rho_{\psi_e} \ln \psi_{eit-1} + \epsilon_{it}^{\psi_e}$$

Using AR(1) for $\ln \psi_{eit}$, rearrange value added energy production function:

$$\ln \tilde{E}_{it} - \ln e_{eit} = \Gamma_t + \rho_{\psi_e} (\ln \tilde{E}_{it-1} - \ln e_{eit-1}) \\ + \frac{\lambda}{\lambda - 1} \left(\ln \frac{\sum_{f \in \mathcal{F}_{it}} s_{fit}}{s_{eit}} - \rho_{\psi_e} \ln \frac{\sum_{f \in \mathcal{F}_{it-1}} s_{fit-1}}{s_{eit-1}} \right) + \mu_i^* + \epsilon_{it}^{\psi_e}$$

Contemporaneous fuel spending shares correlated with shock to electricity productivity $(\epsilon_{it}^{\psi_e})$: instrument fuel spending shares with t-1 fuels prices (assuming persistent)

Switching Costs Matrix $\mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}, s_{it}; \theta)$

			\mathcal{F}'		
		oe	oge	oce	ogce
	oe	0	κ_g	κ_c	$\kappa_g + \kappa_c$
F	oge	$-\gamma_g$	0	$-\gamma_g + \kappa_c$	κ_c
5	oce	$-\gamma_c$	$-\gamma_c + \kappa_g$	0	κ_g
	ogce	$-\gamma_g - \gamma_c$	$-\gamma_c$	$-\gamma_g$	0

State Transition Assumptions

Issue 1: Dimensionality (12 state variables)

- 1. Assume that plants rent capital flexibly at rent rate r_{kt}
- 2. Plants do not forecast rental rate of capital r_{kt} and wage w_t
- 3. Assume $\rho_{p_f} = \rho_{\psi_f} = \rho_f$, and write ratio of productivity/price as single state:

$$\mathbb{E}[\ln(\psi_{fit}/p_{fit}) \mid \mathcal{I}_{it}] = (1 - \rho_f)(\mu_0^f + \mu_t^f + \mu_i^f) + \rho_f \ln(\psi_{fit-1}/p_{fit-1})$$

4. Normally distributed **correlated shocks** between all AR(1) state variables and discretize the state space following Farmer and Akira Toda (2017)

These assuptions are not necessary for identification

State Transition Assumptions

Issue 2: Productivity/prices for fuels that plants are not using

1. Start at initial condition

$$\mathbb{E}\left[\ln(\psi_{fit+1}/p_{fit+1}) \mid f \notin \mathcal{F}_{it}\right] = \mu_0^f + \mu_t^f + \mu_i^f$$

plant-specific systematic fuel f productivity

2. Estimate distribution of μ_i^f jointly with switching costs

Estimating Switching Costs θ and Distribution of μ_i^f Jointly (E-M) I assume that μ_i^f follows a finite mixture distribution with K support points μ_k^f (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$\ln \mathcal{L}(\mathcal{F} \mid \theta) = \sum_{i=1}^{n} \ln \left[\prod_{t=1}^{T} Pr(\mathcal{F}_{it+1} \mid \mathcal{F}_{it}, s_{it}; \theta) \right]$$
$$= \sum_{i=1}^{n} \ln \left[\sum_{k} Pr(\mu_{k}^{f}) \left[\prod_{t=1}^{T} Pr(\mathcal{F}_{it+1} \mid \mathcal{F}_{it}, s_{it}, \mu_{i}^{f} = \mu_{k}^{f}; \theta) \right] \right]$$

Intuition: back-out distribution of comparative advantages µ^f_i that rationalize observed choice paths.

I assume that μ^f_i follows a finite mixture distribution with K support points μ^f_k (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$\ln \mathcal{L}(\mathcal{F} \mid \boldsymbol{\theta}^{0}) = \sum_{i=1}^{n} \ln \left[\sum_{k} \frac{\Pr(\mu_{k}^{f})}{\left[\prod_{t=1}^{T} \Pr(\mathcal{F}_{it+1} \mid \mathcal{F}_{it}, s_{it}, \mu_{i}^{f} = \mu_{k}^{f}; \boldsymbol{\theta}^{0}) \right]} \right]$$

1. Initialize unconditional distribution of comparative advantages $Pr(\mu_k^f)$ and take first guess of fixed costs θ^0

I assume that μ^f_i follows a finite mixture distribution with K support points μ^f_k (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$\ln \mathcal{L}(\mathcal{F} \mid \theta) = \sum_{i=1}^{n} \ln \left[\sum_{k} Pr(\mu_{k}^{f}) \left[\prod_{t=1}^{T} Pr(\mathcal{F}_{it+1} \mid \mathcal{F}_{it}, s_{it}, \mu_{i}^{f} = \mu_{k}^{f}; \theta^{0}) \right] \right]$$

2. Solve model and get probability of a plant's choice path for each type k μ_k^f

I assume that μ_i^f follows a finite mixture distribution with K support points μ_k^f (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$\rho(\mu_k^f \mid \mathcal{F}_i, s_i; \theta^0) = \frac{\pi_{fk}^0 \left[\prod_{t=1}^T \left[\prod_{\mathcal{F} \subseteq \mathbb{F}} \left[\Pr(\mathcal{F}_{it} \mid s_{it}, \mu_i^f = \mu_k^f; \theta^0) \right]^{\mathbb{I}(\mathcal{F}_{it} = \mathcal{F})} \right] \right]}{\sum_k \pi_k^0 \left[\prod_{t=1}^T \left[\prod_{\mathcal{F} \subseteq \mathbb{F}} \left[\Pr(\mathcal{F}_{it} \mid s_{it}, \mu_i^f = \mu_k^f; \theta^0) \right]^{\mathbb{I}(\mathcal{F}_{it} = \mathcal{F})} \right] \right]}$$

3. Get posterior probability that plant *i* is type *k* given choice path $\rho(\mu_k^f | \mathcal{F}_i, s_i; \theta^0)$

I assume that μ_i^f follows a finite mixture distribution with K support points μ_k^f (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$Pr(\mu_k^f) = \frac{\sum_{i=1}^n \rho(\mu_k^f \mid \mathcal{F}_i, s_i; \theta^0)}{n} \quad \forall k$$

4. Update unconditional distribution

I assume that μ_i^f follows a finite mixture distribution with K support points μ_k^f (Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of μ_i^f

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k} \rho(\mu_k \mid \widehat{\mathcal{F}_i, s_i}; \theta^0) \ln \Pr(\mathcal{F}_{it+1} \mid \mathcal{F}_{it}, s_{it}, \mu_i = \mu_k; \theta)$$

- 5. Find the fixed costs θ that maximize conditional likelihood, keeping posterior probability constant
- 6. repeat 2-5 until convergence of unconditional likelihood

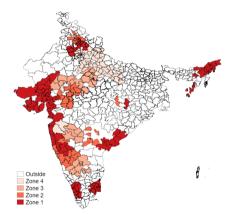
Decomposition of Average Differences in Energy Price

		OCE	OGE	OGCE
Total Difference	Percent (%) Difference with OE	-65.65	-71.54	-86.97
Option Value Fuel Productivity Fuel Prices	Percent (%) of Total	36.14 62.6 1.25	5.42 97.75 -3.18	6.3 94.84 -1.14

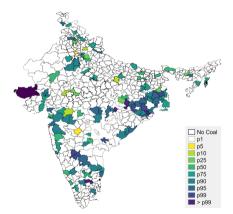
Table: Shapley Decomposition of the Difference in Average Marginal Cost of Energy Between Fuel Sets

Fuel Productivity explains most of the differences

Distribution of Coal vs. Natural Gas Pipelines by Districts



Natural Gas Pipeline Network – 2016



Distribution of Coal Usage

Relationship between Hicks-Neutral Productivity and Fuel Adoption

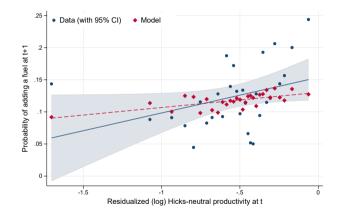
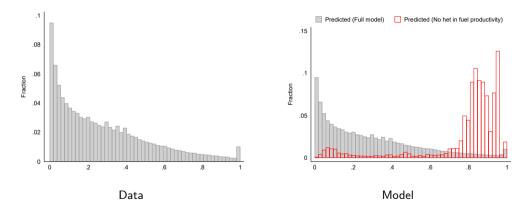


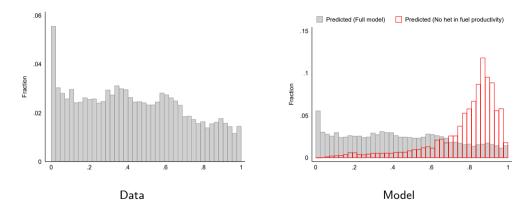
Figure: Adding a fuel at t + 1 against Hicks-neutral productivity at t

Fuel Expenditure Shares when Fuel Productivity is not Included



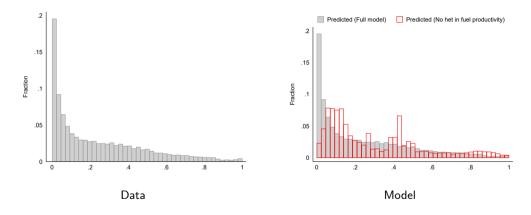
Oil

Fuel Expenditure Shares when Fuel Productivity is not Included



Coal

Fuel Expenditure Shares when Fuel Productivity is not Included



Gas

Elasticity of Energy Price with Respect to Relative Fuel Prices

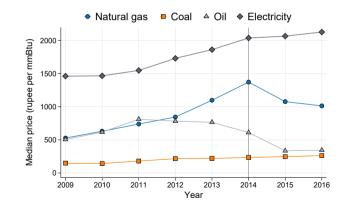
Application of *envelope theorem*:

$$\frac{\partial \ln p_{E_{it}}}{\partial \ln \tilde{p}_{cit}} = \underbrace{\frac{\left(\tilde{p}_{cit}/\tilde{\psi_{cit}}\right)^{1-\lambda}}{\sum_{f \in \mathcal{F}_{it}} \left(\tilde{p}_{fit}/\tilde{\psi}_{fit}\right)^{1-\lambda}}}_{\text{relative coal expenditure ratio} \rightarrow \text{ increasing in relative coal productivity}}}$$

Elasticity increasing in relative fuel productivity:

$$\frac{\partial^2 \ln p_{E_{it}}}{\partial \ln \tilde{p}_{cit} \partial \tilde{\psi}_{cit}} = \frac{(\lambda - 1)\psi_{cit}^{\lambda - 2} \tilde{p}_{cit}^{1 - \lambda} \Big[\sum_{f \in \mathcal{F}_{it} \backslash c} \left(\tilde{p}_{fit} / \tilde{\psi}_{fit}\right)\Big]}{\left(\sum_{f \in \mathcal{F}_{it}} (\tilde{p}_{fit} / \tilde{\psi}_{fit})^{1 - \lambda}\right)^2} > 0 \qquad \text{ if } \quad \lambda > 1$$

Validation Exercice: Aggregate Variation in Natural Gas Prices Motivation: Steady increase in natural gas prices (up until 2014), followed by significant decrease



$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

• Δy_{it} : Change in (log) output price, output quantity

- ▶ $D_t(+)$: Dummy if aggregate natural gas price increased
- $D_t(-)$: Dummy if aggregate natural gas price decreased
- $\frac{\sum_{f \setminus g} s_{fit-1}}{\sum_{f} s_{fit-1}}$ measure exposure (high spending share on other fuels = \downarrow direct exposure)
- Contol for other input prices, year fixed effects, tfp

$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

	$\Delta \ln Y_{it}$		$\Delta \ln P_{it}$	
Ν	/lodel	Data	Model	Data
Price Decreased β_{down}				
Price Increased β_{up}				
Year Fixed Effects				
Other Controls				
N		3,445		3,445
Standard errors in parentheses	5			
* $p < 0.1$, ** $p < 0.05$, *** p	0 < 0.01			

$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

	$\Delta \ln Y_{it}$		$\Delta \ln P_{it}$	
	Model	Data	Model	Data
Price Decreased β_{down}	-			
Price Increased β_{up}	+			
Year Fixed Effects Other Controls				
N		3,445		3,445
Standard errors in parenthes	ses			

* p < 0.1, ** p < 0.05, *** p < 0.01

$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

	Δl	$\Delta \ln Y_{it}$		P_{it}
	Model	Data	Model	Data
Price Decreased β_{down}	-	-1.145**		
		(0.477)		
Price Increased β_{up}	+	0.652*		
		(0.368)		
Year Fixed Effects		Yes		
Other Controls		Yes		
N		3,445		3,445

Standard errors in parentheses

* p < 0.1,** p < 0.05,*** p < 0.01

$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

	$\Delta \ln Y_{it}$		$\Delta \ln t$	P_{it}
	Model	Data	Model	Data
Price Decreased β_{down}	-	-1.145**	+	
		(0.477)		
Price Increased β_{up}	+	0.652*	-	
		(0.368)		
Year Fixed Effects		Yes		
Other Controls		Yes		
N		3,445		3,445

Standard errors in parentheses

* p < 0.1,** p < 0.05,*** p < 0.01

$$\Delta y_{it} = \beta_0 + \beta_{up} \left(D_t(+) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \beta_{down} \left(D_t(-) * \frac{\sum_{f \setminus g} s_{fit-1}}{\sum_f s_{fit-1}} \right) + \epsilon_{it}$$

	$\Delta \ln Y_{it}$		$\Delta \ln$	n P_{it}
	Model	Data	Model	Data
Price Decreased β_{down}	-	-1.145**	+	1.241***
		(0.477)		(0.477)
Price Increased β_{up}	+	0.652*	-	-0.631*
		(0.368)		(0.371)
Year Fixed Effects		Yes		Yes
Other Controls		Yes		Yes
N		3,445		3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01

Welfare Analysis of Natural Gas Subsidy

To implement the subsidy, I use proceeds from carbon tax to finance 10% subsidy on natural gas adoption.

Per-period welfare defined as in Fowlie, Reguant and Ryan (2016):

$$\begin{split} w_t(\tau,s) &= \underbrace{\nu_t(\tau,s)}_{\text{consumer surplus}} + \underbrace{\Pi(\tau,s)}_{\text{producer surplus}} + \underbrace{G(\tau,s)}_{\text{net gov. revenue}} - \underbrace{\sum_{f} \sum_{i} \gamma_f e_{fit}(\tau,s)}_{\text{externality damages}} \\ &= \underbrace{\nu_t(\tau,s)}_{\text{consumer surplus}} + \underbrace{\sum_{i=1}^N \pi_{it}(\tau,s)}_{\text{variable profits}} - \underbrace{\sum_{i} \sum_{f' \subseteq \mathbb{F}} \mathcal{K}(\mathcal{F}' \mid \mathcal{F}_{it}) \mathbf{I}(\mathcal{F}_{it+1} = \mathcal{F}' \mid \tau, s)}_{\text{total fixed costs}} \end{split}$$

Welfare Results

	Carbon Tax Billion U.S Dollars	Carbon Tax + 10% Subsidy Billion U.S Dollars	Difference Million U.S. Dollars
Total Welfare	63.415	63.417	1.18
Variable Profit	22.58	22.60	19.18
Consumer Surplus	22.21	22.22	13.62
Total Fixed Costs (<i>Paid by plants + subsidy</i>)	-18.633	-18.601	31.61
Externality Damages/Tax Revenue	2.64	2.65	9.78