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Introduction Data Model Identification/Estimation Results Policy

Manufacturing: 37% of Global GHG Emissions (Worell et al., 2009)

Key issue: fossil fuel combustion in production

▶ Worse in coal-reliant economies like India and energy-intensive industries like Steel

▶ Leading policy responses increase fuel cost: carbon tax

▶ Reduction in emissions
(Andresson 2019; Ahmadi and Yamazaki 2020; Alpino, Citino and Frigo 2023)

▶ Cost pass-through and reduction in production
(Gittens 2019; Ganapati, Shapiro and Walker 2020; Fontagné, Martin and Orefice 2023)

▶ Important: growth concerns can explains lack of carbon tax in India (Jack 2017)

How cost-effective are leading carbon policies at reducing emissions? Are there
winners and losers?
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This Paper: Firm Responses in Novel Dynamic Production Model

Use fuels to produce energy. Produce output using energy, along with other inputs.

Novelty: heterogeneity in ability and incentives of firms to use different fuels

1. Dynamic switching between fuel sets F ⊆ {oil, electricity, natural gas, coal}
2. Heterogeneity across firms’ ability to convert fuels to energy Examples

I estimate model with rich panel of Indian manufacturing establishments (2009-2016)

▶ Key challenge: multidimensional unobserved heterogeneity (fuel productivity)

▶ Tractable estimation in four stages (Ganapati, Shapiro and Walker 2020; Grieco, Li and

Zhang 2016; Zhang 2019; Arcidiacono and Jones 2003)

Quantify trade-off of policies: carbon tax on fossil fuels, cleaner fuel subsidy
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How do Firms Respond to Increase in Fuel Cost?

1. Intensive margin: flexible fuel substitution within fuel set

2. Extensive margin: costly switching between fuel sets across periods

3. Scale: pass-through to consumers and reduce output

Role of heterogeneity in fuel productivity: use more of most productive fuels

1. High fuel productivity, less willing to substitute: higher ↑ marginal cost, higher
pass-through (more exposed)

2. Output reallocates towards less exposed plants who become more competitive
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Carbon Tax: Reducing Emissions less Costly than Previously Thought

Steel: can maintain 93% of industry output while reducing emissions by 50%

1. Reallocation of output from dirty to cleaner plants

▶ Harms high coal productivity plants (↓ competitive) but benefits high natural gas &
electricty productivity plants (↑ competitive)

2. Output recomposition critical to reduce emissions because of technology lock-in

▶ Large emitters: no transition away from coal (fixed costs of transition, comparative
advantage at coal)

3. No heterogeneity in fuel productivity: overestimate private cost of carbon tax

▶ 2x more output loss for 50% emissions reduction

Reallocation of output consistent with empirical literature (Alpino, Citino and Frigo 2023,

Dussaux 2021, Najjar and Cherniwchan 2023)
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Literature and Contribution

1. Fuel substitution in manufacturing (Hyland and Haller 2018, Wang and Lin 2017, Stern

2012, Ma et al. 2008, Pindyck 1979, Fuss 1977)

▶ Novel channels capturing firms’ response to changes in fuel cost Details

1.1 Inter-temporal switching between fuel sets
1.2 Heterogeneity fuel productivity

2. Literature on carbon policy in manufacturing (Ganapati, Shapiro and Walker 2020,

Shapiro and Walker 2018, Fowlie, Reguant and Ryan 2016, Ryan 2012)

▶ Novel channels have important quantitative implications for carbon policy Details

3. Production function estimation (Olley and Pakes 1996; Blundell and Bond, 2000; Levinsohn

and Petrin 2003; Ackerberg, Caves and Frazer 2015; Grieco, Li and Zhang 2016; Zhang 2019;

Gandhi, Navarro and Rivers, 2020; Demirer, 2020)

▶ 4-stages estimation technique can be applied to other settings
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Data: Indian Survey of Industries (ASI) 2009-2016

▶ Annual panel of Indian manufacturing establishments

▶ Establishment-level data on prices and quantities for all inputs and outputs

▶ Energy inputs: Coal, Oil, Electricity and Natural Gas

▶ Price and quantities: heating potential in mmBtu

▶ Emissions (schedule 1 and 2): One mmBtu of each fuel releases some amount of
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)

▶ I convert these three pollutants to carbon dioxide equivalent (CO2e) using the Global
Warming Potential method (GWP).

Today: Steel

▶ Highly polluting industry (70% of fuel usage in coal): scope for reducing emissions
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Plants Producing Steel use Different Fuel Sets and Often Switch

Percentage (%) of establishments in different fuel sets

Steel

Oil, Electricity 51.3
Oil, Electricity, Coal 19.3
Oil, Electricity, Gas 10.8
Oil, Electricity, Coal, Gas 7.4
Other 11.1

Significant proportion of plants add or drop a fuel at least once

Adds New Fuel Drop Existing Fuel Both Add and Drop

Yes (%) 39.4 39.6 26.0

Switching by year Switching by Fuel Number of Fuels and Productivity
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Model
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Production Model

1. Outer Production (plant i at time t):

Yit = zit

[(
αK
(
Kit︸︷︷︸

Capital

)σ−1
σ + αL

(
Lit︸︷︷︸
Labor

)σ−1
σ + αM

(
Mit︸︷︷︸

Materials

)σ−1
σ + αE

(
Eit︸︷︷︸

Energy – Unobserved

)σ−1
σ

) σ
σ−1

]η

2. Inner Energy Production given a fuel set Fit

Eit =

( ∑
f∈Fit

(
ψfitefit

)λ−1
λ

) λ
λ−1

Fit ⊆ {Oil, Elec, Gas, Coal}

Key innovation:

1. plant-by-year productivity ψfit: different incentives to substitute across firms

2. More substitution possibilities when Fit is larger (option value)
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Production Decisions: (1) Within-Period (Static Profits)

Maximize profits taking input prices & productivities (sit) and fuel set Fit as given

π(sit,Fit) = max
Mit,Lit,{efit}f∈Fit

{
Pit(Yit)Yit − wtLit − pmitMit −

∑
f∈Fit

pfitefit

}

▶ Technological constraint Yit

▶ Demand constraint Pit(Yit) (monopolistic competition with demand elasticity ρ)

Can be separated in two optimization problems (leverage for estimation)

1. Minimize cost to produce energy with fuels → endogenous price of energy pEit

2. Maximize profits using energy as an input

two-stages energy price
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Production Decisions: (2) Inter-temporal Fuel Set Choices

V (sit,Fit) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
period profits

−K(F ′ | Fit, sit) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+β E[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}

1. Plants face price & productivity (sit) uncertainty

E(ln sit+1 | Iit) = (1− ρs)(µ
s
0 + µst + µsi ) + ρs ln sit

▶ States sit: fuel prices and productivity ({pfit, ψfit}f∈F), material prices (pmit),
productivity (zit), location and year.

2. Fixed cost to add fuel and salvage value from dropping fuel

▶ Vary with productivity zit and access to natural gas pipeline network
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Identification/Estimation
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Identification and Estimation in Four Separate Stages

Goal: Recover everything (demand and production parameters, fuel productivity,
switching costs)

1. Demand estimation: shift-share instrument exploiting shocks to fuel prices
(Ganapati, Shapiro and Walker 2020)

2. Outer production function: I allow for unobserved quantity Eit and price pEit of
energy (Grieco, Li and Zhang 2019)

3. Energy production function: Fuel productivity ψfit for fuels that plants are using
(Zhang 2019)

4. Inter-temporal switching: Distribution of fuel productivity for fuels that plants are
not using jointly with switching costs
(Arcidiacono and Jones 2003)
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Stage 1: Demand Estimation (ρ)

Plant i in year t

lnYit = Λt − ρ lnPit + ϵit

▶ Due to simultaneity, I create a shift-share instrument for output prices that affects
marginal cost following Ganapati et al. (2020)

zrt =
[
p−r,t,f ∗ σr,2008,f

]
, f ∈ {coal, gas, oil}

1. Shift p−r,t,f : average price of fuel f in year t across all but own state

2. Share σr,2008,f : pre-sample share of fuel f used to generate electricity in state r

Output price Results & Robustness
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Stage 2: Outer Production Function

Yit = zit

[(
αK
(
Kit

)σ−1
σ + αL

(
Lit
)σ−1

σ + αM
(
Mit

)σ−1
σ + αE

(
Eit︸︷︷︸

Energy - unobserved

)σ−1
σ

) σ
σ−1

]η

Issues:

1. One of the input is unobserved Eit

2. Productivity zit is correlated with input choices (bias parameter estimates)
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Stage 2: Outer Production Function

▶ FOC of energy/labor: Eit︸︷︷︸
Profit-max quantity of energy

=
(
αL
αE

SEit
SLit︸︷︷︸

Relative input spending

) σ
σ−1 × Lit︸︷︷︸

Quantity of labor

▶ FOC labor: zit = f(Lit, SLit ,Kit, SEit , SMit ; θ)

Substitute Eit and zit into revenue to get estimating equation (Grieco, Li and Zhang 2016)

Consistency with demand
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lnRit = ln
ρ

ρ− 1︸ ︷︷ ︸
demand elasticity: known

+ ln
1

η
+ ln

(
SLit

(
1 +

αk
αL

(Kit

Lit

)σ−1
σ
)
+ SMit + SEit

)
+ uit︸︷︷︸

Measurement error

Consistency with demand
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SLit
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1 +

αk
αL

( Kit

Lit︸︷︷︸
Normalization

)σ−1
σ
)
+ SMit + SEit
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Measurement error

Consistency with demand



17/38

Introduction Data Model Identification/Estimation Results Policy

Stage 3: Energy Production Function (Now that Êit is Observed)

1. Normalize fuel productivity relative to electricity

Êit =
( ∑
f∈Fit

(
ψfitefit

)λ−1
λ
) λ

λ−1

= ψeit

( ∑
f∈Fit

(
ψ̃fitefit

)λ−1
λ
) λ

λ−1
where ψ̃fit ≡ ψfit/ψeit︸ ︷︷ ︸

Relative fuel productivity

2. Exploit FOC of cost-minimization to produce energy

ψ̃fit︸︷︷︸
Relative fuel productivity

s.t.
pfit
peit︸︷︷︸

Relative fuel prices

= ψ̃fit
λ−1
λ

( eeit
efit

) 1
λ

︸ ︷︷ ︸
Relative fuel Marginal Products
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Stage 3: Energy Production Function (Now that Êit is Observed)

Substitute relative fuel productivity into energy production function (similar to Zhang 2019)

ln
Eit
eeit︸ ︷︷ ︸

value-added of electricity

= lnψeit︸ ︷︷ ︸
Electricity productivity

+
λ

λ− 1
ln

( ∑
f∈Fit

sfit
seit

)
︸ ︷︷ ︸

Relative spending on other fuels

▶ Only one unobservable left (lnψeit): can use standard methods

▶ AR(1) for lnψeit (Gandhi, Navarro and Rivers 2020) and lagged fuel prices as
instruments

▶ Estimating equation is canonical linear dynamic panel (Blundell and Bond 1998)

Estimating eq
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Production Function Estimation Results

Production Function
Parameters

Average Revenue Elasticities

Returns to scale η̂
1.19
[1.18,1.20]

Labor
0.030
[0.03,0.032]

Outer substitution elasticity σ̂
1.87
[0.9,2.85]

Capital
0.016
[0.01,0.024]

Fuel substitution elasticity λ̂
2.22
[1.5,3.25]

Materials
0.745
[0.74,0.75]

Demand Elasticity ρ̂
4.20
[2.79,5.68]

Energy
0.12
[0.113,0.12]

“Effective” returns to scale
0.91
[0.89,0.91]

1. Fuels are more substitutable among each others than energy with other inputs

2. Elasticity of energy larger than labor and capital: Energy matters for steel
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Stage 4: Dynamic Discrete Choice

V (sit,Fit) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
period profits

−K(F ′ | Fit, sit; θ) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+β E[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}

switching cost matrix assumptions states



20/38

Introduction Data Model Identification/Estimation Results Policy

Stage 4: Dynamic Discrete Choice

V (sit,Fit) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
period profits

−K(F ′ | Fit, sit; θ) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+β E[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}

Fixed switching cost function K(F ′ | Fit, sit; θ)

▶ Add gas: κg + κ ln zit + λgI(no pipeline)

▶ Drop gas: γg + γ ln zit

▶ Add coal: κc + κ ln zit

▶ Drop coal: γc + γ ln zit

switching cost matrix assumptions states
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Stage 4: Dynamic Discrete Choice

V (sit,Fit) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
period profits

−K(F ′ | Fit, sit; θ) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+βE[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}

Uncertainty over future states sit+1. plants forecast using AR(1) with correlated
shocks (Farmer and Akiro Toda, 2017)

▶ Fuel productivity over prices ψfit/pfit ∀f ∈ F

▶ Price of intermediate materias pmit

▶ Hicks-neutral productivity zit

switching cost matrix assumptions states
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Stage 4: Dynamic Discrete Choice

V (sit,Fit) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
period profits

−K(F ′ | Fit, sit; θ) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+βE[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}

ϵF ′it: Type-1 extreme value shock to choice-specific switching cost

▶ Choice probabilities take logit form

e

(
υF′ (sit,Fit;θ)

)
∑

F∈F e

(
υF (sit,Fit;θ)

)
▶ To estimate switching costs, need to solve the model under all possible fuel sets

How to predict fuel productivity for fuels that plants have never used?
switching cost matrix assumptions states
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Fuel Productivity for Fuels that Plants have Never Used

Assumption: plant systematic differences in fuel productivity (comparative advantage):

µfi ∀f ∈ F
▶ Plants know about µfi which guides their fuel set choices

▶ Researcher doesn’t observe µfi (similar to Roy model)

▶ Treat comparative advantage as unobserved types in dynamic discrete choice
model

▶ Estimate distribution of unobserved typs jointly with switching costs in full info
likelihood following Arcidiacono and Jones (2003)

▶ Expectation-Maximum algorithm where you recursively iterate between distribution
of switching costs and distribution of unobserved types

Details E-M
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Distribution of Expected Fuel Productivity (Gas and Coal)
E(ψfit | F) ∀F ⊆ F

-13.5

-13

-12.5

-12

-11.5

Ex
pe

ct
ed

 (l
og

) f
ue

l p
ro

du
ct

iv
ity

oe oce oe ogeoge ogce oce ogce
Fuel set

Natural Gas (Data) Coal (Data)
Natural Gas (Counterfactual) Coal (Counterfactual)

1. Plants who do not use coal would be 60% less productive at it

2. Plants who do not use gas would be 20% less productive at it Contribution to energy price
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Fixed Switching Costs

Fixed Costs
(Million USD)

Salvage Values
(Million USD)

Natural Gas
Pipeline Access 28.83

15.12
No Pipeline Access 40.46

Coal 28.82 8.33
Total Factor Productivity (100 % increase) 0.82 0.25

Observations 2,393

▶ Fixed costs economically significant: for gas, 6x median and 2x average revenues.

▶ Fixed costs are 2-3 times larger than salvage values

▶ Gas fixed costs 50% larger for plans without access to pipeline
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Concentration of Energy in high Coal Productivity, low TFP Plants
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Results Provide Evidence for Technology Lock-in

Combining the two previous results points towards technology lock-in, especially for
large coal users located in Steel Belt

▶ No access to natural gas pipeline (fixed costs averaging $40 Million USD)

▶ Too productive at coal relative to other fuels to justify dropping it

▶ Would not be productive enough overall and at natural gas to justify adoption

Map
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Model Fit – Distribution of Fuel Sets

Figure: Unconditional distribution of fuel sets, model vs. data (N = 2, 393)

tfp fuel expenditures
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Model Fit – Fuel Set Transitions

From Oil,Coal,Electricity (OCE) – N = 572 From Oil, Gas, Electricity (OGE) – N = 280

From Oil, Electricity (OE) – N = 1, 342
From Oil, Gas, Coal, Electricity (OGCE) –

N = 199

Figure: Conditional distribution of fuel sets (transition), model vs. data
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Policy
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Policy Counterfactuals: Carbon Tax

▶ Per-unit fuel tax where relative tax rate proportional to fuel’s emission intensity.

▶ Trace out trade-off between output and emission reduction for various tax levels

▶ I simulate the economy with and without the tax for 40 years and compare net
present value of outcomes along entire path

E(X(τ)) ≈ 1

S

1

40

S∑
s=1

40∑
t=0

βtXts(τ)

X = {aggregate output, aggregate emissions}

Fuel
Average Price

(Rupees)
Emission Factor

(Kg CO2e/mmBtu)

Coal 262 100
Oil 665 82
Electricity 1,681 65
Natural Gas 1,307 60
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Policy Results - Greater Emission Reduction than Production Loss

Higher Tax Rate

Lower Tax Rate

▶ Production frontier between
output and emission reduction

▶ Each point on graph correspond
to different levels of tax

▶ Increasing marginal cost of
reducing emissions
(Fowlie, Reguant and Ryan 2016)
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Policy Results - Greater Emission Reduction than Production Loss

• (93,50)

▶ For 50% reduction in emissions,
produce 93% of output

▶ Full Model: %∆Emission
%∆Output = 7.14
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Policy Results - Greater Emission Reduction than Production Loss

Economy with no fuel
productivity heterogeneity

▶ Energy production with
average fuel productivity βf

▶ Similar to Hawkins-Pierot and
Wagner (2022)

Eit = ψEit

( ∑
f∈Fit

βfe
λ−1
λ

fit

) λ
λ−1
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Policy Results - Greater Emission Reduction than Production Loss

•(93,50)•
(88,50)

▶ Full Model: %∆Emission
%∆Output = 7.14

▶ No Fuel Productivity:
%∆Emission
%∆Output = 4.16
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Policy Results - Why Heterogeneity in Fuel Productivity Matters

▶ Carbon tax raises price of coal and oil relative to electricity and gas

▶ Envelope theorem: elasticity of energy price with respect to relative fuel prices
increasing in relative fuel productivity
▶ Counter-intuitive

▶ Plants relatively more productive at coal (big polluters)

1. Higher elasticity (more exposed to tax)
2. Higher increase in marginal cost
3. Higher pass-through of tax to output price

▶ Reallocation of demand shifts industry output from high to low elasticity plants:
benefits cleaner plants at expense of dirty plants

Details elasticity
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Policy Results - Why Heterogeneity in Fuel Productivity Matters

▶ Carbon tax raises price of coal and oil relative to electricity and gas

▶ Envelope theorem: elasticity of energy price with respect to relative fuel prices
increasing in relative fuel productivity
▶ Counter-intuitive

▶ Plants relatively more productive at coal (big polluters)

1. Higher elasticity (more exposed to tax)
2. Higher increase in marginal cost
3. Higher pass-through of tax to output price

▶ Reallocation of demand shifts industry output from high to low elasticity plants:
benefits cleaner plants at expense of dirty plants

Details elasticity
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Policy Results – Extent of Reallocation Depends on Demand Elasticity (ρ)

Effect of Doubling Elasticity of Demand ρ
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Effect of Doubling Elasticity of Demand ρ
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Policy Results – Extent of Reallocation Depends on Demand Elasticity (ρ)

Effect of Doubling Elasticity of Demand ρ

More elastic demand

▶ Consumers more willing to
substitute between steel
varieties

▶ Carbon tax becomes more
effective

▶ Only true when allowing for
fuel productivity
heterogeneity
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This Result is Consistent with Empirical Literature

▶ Recent empirical literature studying the effect of European Energy Crisis (2x
natural gas prices, 1.5x electricity prices) (Fontagne, Martin, Orefice 2023; Moll,

Schularick and Zachmann 2023; Dussaux 2021; Alpino, Citino and Frigo 2023)

1. Energy-intensive firms increased their output prices more than other firms (Alpino,

Citino and Frigo 2023)

2. Rise in energy prices triggered a reallocation of production and workers from
energy-intensive to energy-efficient firms (Dussaux 2021)

▶ Najjar and Cherniwchan (2021) show that reallocation of output across plants
explains 50% of canadian manufacturing clean-up in small particular matter

Reduced-form evidence
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Beyond Output Recomposition – Carbon Tax does not Increase Gas
Adoption
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Fixed Costs Increase Output Cost of Emission Reduction
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Alleviating Technology Lock-in – Subsidy Towards Natural Gas Adoption

Permanent 10% subsidy (4 million per adoption) together with carbon tax (SCC at
$51/tCO2e)

▶ Fraction of plants utilizing natural gas from 0.19 to 0.24: not large coal users

▶ Over 90% of subsidy goes towards plants who would add natural gas in absence of
subsidy (40 year horizon) → free riders

▶ Emissions goes up together with output due to option value of new fuel

▶ Plants do not drop coal to keep option value

▶ Overall cost is substantial ($2.7 billion), but minimal welfare effect (0.003%)

Full welfare analysis
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Conclusion

▶ Developed a novel dynamic production model of fuel choices.

▶ Estimate the model with Indian Steel manufacturing plants.

▶ I find that heterogeneity in ability and incentives to substitute is important to
understand how firms respond to changes in fuel costs

▶ Using novel channels, I quantify the production cost of emission reduction induced
by carbon tax.

1. Heterogeneity in fuel productivity reduces trade-off
2. Fixed Costs increase trade-off

▶ I show that subsidizing natural gas adoption is ineffective at reducing emissions
compared to carbon tax
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Thank You!

emurrayl@uwo.ca
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Source of Heterogeneity in Fuel Productivity – Examples

...Across fuel types:

▶ Steel technologies: Electric-arc furnaces (electricity, natural gas) are more
productive than coal furnaces at using physical units (heating potential) of the
underlying fuels (Worrell, Blinde, Neelis, Blomen and Masanet 2010).

...Within fuel types

▶ Unobserved fuel quality: for example, high grade coal (Anthracite, Bituminous)
has a higher energy content for a given physical unit relative to lower grade coal
(Lignite, Sub-Bituminous)

...Energy retrofit

▶ Heterogeneity on how efficiently agents use the heating potential of fuels
(Christensen, Francisco and Myers 2022).

Back to main
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Contribution to Literature on Fuel Substitution

Wang and Lin (2017) Stern (2012), Ma et al. 2008, Pindyck (1979) Fuss (1977)

▶ Translog production function to estimate partial substitution elasticities

▶ Some papers (e.g. Hyland and Haller, 2018) recover aggregate elasticities, but no story
as to why they differ

▶ Some papers going back to Joskow and Mishkin (1977) allow for discrete choice
between fuel sets: no dynamic switching and not within production function.

Contribution: Heterogeneity in fuel productivity, dynamic switching between fuel sets

1. Reallocation in production induced by heterogeneous exposure to price change →
aggregate substitution elasticities differ from individual ones

2. Technology lock-in
Back to main
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Contribution to Literature on Carbon Policy in Manufacturing

▶ Structural models tend to overestimate output cost of carbon tax (Fowlie, Reguant

and Ryan 2016, Ryan 2012)

▶ Literature on tax incidence captures heterogeneity between producers and
consumers (Ganapati, Shapiro and Walker 2020)

▶ I show that there is significant heterogeneity within producers based on exposure
variation

▶ Literature technology lock-in quite similar but does not allow for fuel substitution
(Hawkins-Pierot and Wagner, 2022)

▶ Fuel substitution helps understand whether technology lock-in is driven by large
investment costs vs. lack of incentives to substitute

▶ Fuel productivity explains selection of firms into technologies

Back to main
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Fuel Switching by Year
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Fuel Switching by Year and Fuels
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Number of Fuels and Productivity
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Static Production Decisions in Two Stages: (1) Cost-Minimization

min
{efit}f∈Fit

{ ∑
f∈Fit

pfitefit

}
s.t. Ẽit =

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

The achieved minimum of this problem is an energy cost function C(Ẽit) that satisfies:

C(Ẽit) =
( ∑
f∈Fit

( p̃fit
ψfit

)1−λ) 1
1−λ

Ẽit

= pẼit
Ẽit =

∑
f∈Fit

pfitefit

Back to main
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Static Production Decisions in Two Stages: (1) Profit-Maximization

π(sit,Fit) = max
Kit,Mit,Lit,Eit

{(eΓt

Nt

) 1
ρ
P

1+ρ(θ−1)
(θ−1)ρ

t Y
ρ−1
ρ

it − wtLit − rktKit − pmitMit − pEitEit

}
s.t. Ỹit = zit

[
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αEẼ
σ−1
σ

] ησ
σ−1

Back to main
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Price of Energy Captures all Novel Channels of Heterogeneity

pEit =

( ∑
f∈Fit

(
pfit/ψfit

)1−λ) 1
1−λ

1. Fuel set Fit : larger fuel sets lowers pEit (option value)

2. Fuel productivity ψfit : higher fuel productivity lowers pEit

3. Fuel prices pfit : higher fuel prices lower pEit

Back to main
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Construction of Output Price

Output price is weighted average of
products sold

Pit =
∑
k

skitPkit

▶ skit : sales share of product k.

▶ Most plants produce a single product

▶ Multiprod plants have dominant product
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Elasticity of Demand – Results and Robustness

Baseline Lagged fuel expenditures as share

Elasticity of Demand ρ̂ -4.201∗∗∗ -4.669+ -4.016∗ -3.089∗∗

(0.894) (2.695) (1.851) (0.942)

Year FE Y Y Y Y

Region x Year FE Y

State x Year FE Y

N 8,517 4,088 4,088 4088

Standard errors in parentheses
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Back to main



38/38

Extra

Normalization of the CES Around Geometric Mean

Following Grieco, Li and Zhang (2016), I explicitely normalize the CES production

function around the geometric mean of each variable X =
(∏n

i=1

∏T
t=1Xit

) 1
nT

to

estimate the production function:

Yit

Y
= zit

(
αK

(Kit

K

)σ−1
σ

+ αL

(Lit
L

)σ−1
σ

+ αM

(Mit

M

)σ−1
σ

+ αE

(Eit
E

)σ−1
σ

) ησ
σ−1

s.t. αL + αK + αM + αE = 1

Back to main
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Consistency Between Demand and Production Function

Quantity observed: lnYit = lnQit︸ ︷︷ ︸
true quantity

+ ωit︸︷︷︸
quantity measurement error

Demand equation:

lnYit = Λt − ρ lnPit + eit︸︷︷︸
ex-post demand shock

+ωit

= Λt − ρ lnPit + ϵit

Then, observed revenue is: lnRit = ln(PitYit) = ln(PitQit) + uit

Can allow for measurement error in prices as well (ωit ̸= uit)

Back to main
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Details: Identification of inner production function

lnψeit = (1− ρψe)(µ
ψe
0 + µψe

i ) + µψe
t − ρψeµ

ψe
t−1 + ρψe lnψeit−1 + ϵψe

it

Using AR(1) for lnψeit, rearrange value added energy production function:

ln Ẽit − ln eeit︸ ︷︷ ︸
yit

= Γt + ρψe(ln Ẽit−1 − ln eeit−1︸ ︷︷ ︸
yit−1

)

+
λ

λ− 1

(
ln

∑
f∈Fit

sfit

seit︸ ︷︷ ︸
xit

−ρψe ln

∑
f∈Fit−1

sfit−1

seit−1︸ ︷︷ ︸
xit−1

)
+ µ∗i + ϵψe

it

canonical form with common parameter restrictions:

yit = Γt + ρyit−1 + β1xit − β2xit−1 + µ∗i + ϵit s.t. β2 = ρβ1
Back to main
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Details: Identification of inner production function

lnψeit = (1− ρψe)(µ
ψe
0 + µψe

i ) + µψe
t − ρψeµ

ψe
t−1 + ρψe lnψeit−1 + ϵψe

it

Using AR(1) for lnψeit, rearrange value added energy production function:

ln Ẽit − ln eeit = Γt + ρψe(ln Ẽit−1 − ln eeit−1)

+
λ

λ− 1

(
ln

∑
f∈Fit

sfit

seit
− ρψe ln

∑
f∈Fit−1

sfit−1

seit−1

)
+ µ∗i + ϵψe

it

Lagged dependent variable (ln Ẽit−1 − ln eeit−1) correlated with fixed effect (µ∗i ):
system GMM from Blundell and Bond (1998)

Back to main
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Details: Identification of inner production function

lnψeit = (1− ρψe)(µ
ψe
0 + µψe

i ) + µψe
t − ρψeµ

ψe
t−1 + ρψe lnψeit−1 + ϵψe

it

Using AR(1) for lnψeit, rearrange value added energy production function:

ln Ẽit − ln eeit = Γt + ρψe(ln Ẽit−1 − ln eeit−1)

+
λ

λ− 1

(
ln

∑
f∈Fit

sfit

seit
− ρψe ln

∑
f∈Fit−1

sfit−1

seit−1

)
+ µ∗i + ϵψe

it

Contemporaneous fuel spending shares correlated with shock to electricity productivity
(ϵψe

it ): instrument fuel spending shares with t− 1 fuels prices (assuming persistent)

Back to main
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Switching Costs Matrix K(F ′ | Fit, sit; θ)

F ′

oe oge oce ogce

F

oe 0 κg κc κg + κc
oge −γg 0 −γg + κc κc
oce −γc −γc + κg 0 κg
ogce −γg−γc −γc −γg 0

Back to main
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State Transition Assumptions

Issue 1: Dimensionality (12 state variables)

1. Assume that plants rent capital flexibly at rent rate rkt

2. Plants do not forecast rental rate of capital rkt and wage wt

3. Assume ρpf = ρψf
= ρf , and write ratio of productivity/price as single state:

E[ln(ψfit/pfit) | Iit] = (1− ρf )(µ
f
0 + µft + µfi ) + ρf ln(ψfit−1/pfit−1)

4. Normally distributed correlated shocks between all AR(1) state variables and
discretize the state space following Farmer and Akira Toda (2017)

These assuptions are not necessary for identification

Back to main
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State Transition Assumptions

Issue 2: Productivity/prices for fuels that plants are not using

1. Start at initial condition

E
[
ln(ψfit+1/pfit+1) | f /∈ Fit

]
= µf0 + µft + µfi︸︷︷︸

plant-specific systematic fuel f productivity

2. Estimate distribution of µfi jointly with switching costs

Back to main
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Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

lnL(F | θ) =
n∑
i=1

ln

[
T∏
t=1

Pr(Fit+1 | Fit, sit; θ)

]

=

n∑
i=1

ln

[∑
k

Pr(µfk)

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µfi = µfk ; θ)

]]

▶ Intuition: back-out distribution of comparative advantages µfi that rationalize
observed choice paths.

Back to main



38/38

Extra

Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

lnL(F | θ0) =
n∑
i=1

ln

[∑
k

Pr(µfk)

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µfi = µfk ; θ
0)

]]

1. Initialize unconditional distribution of comparative advantages Pr(µfk) and take
first guess of fixed costs θ0

Back to main
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Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

lnL(F | θ) =
n∑
i=1

ln

[∑
k

Pr(µfk)

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µfi = µfk ; θ
0)

]]

2. Solve model and get probability of a plant’s choice path for each type k µfk

Back to main
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Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

ρ(µfk | Fi, si; θ0) =
π0fk

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µfi = µfk ; θ

0)
]I(Fit=F)

]]
∑

k π
0
k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µfi = µfk ; θ

0)
]I(Fit=F)

]]

3. Get posterior probability that plant i is type k given choice path ρ(µfk | Fi, si; θ0)

Back to main
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Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

Pr(µfk) =

∑n
i=1 ρ(µ

f
k | Fi, si; θ0)
n

∀k

4. Update unconditional distribution

Back to main
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Estimating Switching Costs θ and Distribution of µfi Jointly (E-M)

I assume that µfi follows a finite mixture distribution with K support points µfk
(Arcidiacono and Jones, 2003)

Using Law of Total Probability, I can condition likelihood on distribution of µfi

θ̂ = argmax
θ

N∑
i=1

T∑
t=1

∑
k

̂ρ(µk | Fi, si; θ0) lnPr(Fit+1 | Fit, sit, µi = µk; θ)

5. Find the fixed costs θ that maximize conditional likelihood, keeping posterior
probability constant

6. repeat 2-5 until convergence of unconditional likelihood

Back to main
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Decomposition of Average Differences in Energy Price

OCE OGE OGCE

Total Difference Percent (%) Difference with OE -65.65 -71.54 -86.97

Option Value
Percent (%) of Total

36.14 5.42 6.3
Fuel Productivity 62.6 97.75 94.84
Fuel Prices 1.25 -3.18 -1.14

Table: Shapley Decomposition of the Difference in Average Marginal Cost of Energy Between Fuel Sets

Fuel Productivity explains most of the differences
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Distribution of Coal vs. Natural Gas Pipelines by Districts

Natural Gas Pipeline Network – 2016 Distribution of Coal Usage
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Relationship between Hicks-Neutral Productivity and Fuel Adoption
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Figure: Adding a fuel at t+ 1 against Hicks-neutral productivity at t
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Fuel Expenditure Shares when Fuel Productivity is not Included
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Fuel Expenditure Shares when Fuel Productivity is not Included
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Fuel Expenditure Shares when Fuel Productivity is not Included
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Elasticity of Energy Price with Respect to Relative Fuel Prices

Application of envelope theorem:

∂ ln pEit

∂ ln p̃cit
=

(
p̃cit/ψ̃cit

)1−λ
∑

f∈Fit

(
p̃fit/ψ̃fit

)1−λ
︸ ︷︷ ︸

relative coal expenditure ratio → increasing in relative coal productivity

Elasticity increasing in relative fuel productivity:

∂2 ln pEit

∂ ln p̃cit∂ψ̃cit
=

(λ− 1)ψλ−2
cit p̃

1−λ
cit

[∑
f∈Fit\c

(
p̃fit/ψ̃fit

)]
(∑

f∈Fit
(p̃fit/ψ̃fit)1−λ

)2 > 0 if λ > 1
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Validation Exercice: Aggregate Variation in Natural Gas Prices
Motivation: Steady increase in natural gas prices (up until 2014), followed by
significant decrease
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

▶ ∆yit: Change in (log) output price, output quantity

▶ Dt(+): Dummy if aggregate natural gas price increased

▶ Dt(−): Dummy if aggregate natural gas price decreased

▶
∑

f\g sfit−1∑
f sfit−1

measure exposure (high spending share on other fuels = ↓ direct exposure)

▶ Contol for other input prices, year fixed effects, tfp
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

∆ lnYit ∆ lnPit

Model Data Model Data

Price Decreased βdown

Price Increased βup

Year Fixed Effects
Other Controls

N 3,445 3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

∆ lnYit ∆ lnPit

Model Data Model Data

Price Decreased βdown -

Price Increased βup +

Year Fixed Effects
Other Controls

N 3,445 3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

∆ lnYit ∆ lnPit

Model Data Model Data

Price Decreased βdown - -1.145∗∗

(0.477)

Price Increased βup + 0.652∗

(0.368)

Year Fixed Effects Yes
Other Controls Yes

N 3,445 3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

∆ lnYit ∆ lnPit

Model Data Model Data

Price Decreased βdown - -1.145∗∗ +
(0.477)

Price Increased βup + 0.652∗ -
(0.368)

Year Fixed Effects Yes
Other Controls Yes

N 3,445 3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Validation Exercice: Aggregate Variation in Natural Gas Prices

∆yit = β0 + βup

(
Dt(+) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ βdown

(
Dt(−) ∗

∑
f\g sfit−1∑
f sfit−1

)
+ ϵit

∆ lnYit ∆ lnPit

Model Data Model Data

Price Decreased βdown - -1.145∗∗ + 1.241∗∗∗

(0.477) (0.477)

Price Increased βup + 0.652∗ - -0.631∗

(0.368) (0.371)

Year Fixed Effects Yes Yes
Other Controls Yes Yes

N 3,445 3,445

Standard errors in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01
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Welfare Analysis of Natural Gas Subsidy

To implement the subsidy, I use proceeds from carbon tax to finance 10% subsidy on
natural gas adoption.

Per-period welfare defined as in Fowlie, Reguant and Ryan (2016):

wt(τ, s) = νt(τ, s)︸ ︷︷ ︸
consumer surplus

+ Π(τ, s)︸ ︷︷ ︸
producer surplus

+ G(τ, s)︸ ︷︷ ︸
net gov. revenue

−
∑
f

∑
i

γfefit(τ, s)︸ ︷︷ ︸
externality damages

= νt(τ, s)︸ ︷︷ ︸
consumer surplus

+
N∑
i=1

πit(τ, s)︸ ︷︷ ︸
variable profits

−
N∑
i

( ∑
F ′⊆F

K(F ′ | Fit)I(Fit+1 = F ′ | τ, s)
)

︸ ︷︷ ︸
total fixed costs
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Welfare Results

Carbon Tax
Carbon Tax

+ 10% Subsidy
Difference

Billion U.S Dollars Billion U.S Dollars Million U.S. Dollars

Total Welfare 63.415 63.417 1.18

Variable Profit 22.58 22.60 19.18
Consumer Surplus 22.21 22.22 13.62

Total Fixed Costs (Paid by plants + subsidy) -18.633 -18.601 31.61
Externality Damages/Tax Revenue 2.64 2.65 9.78
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