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Abstract

The economic cost of carbon pricing depends on the ability and incentives of firms to switch

towards cleaner fuels. Yet, many fundamental economic forces that drive firms’ decisions to use

different fuels are unobserved, causing significant uncertainty over the effectiveness of carbon

policies. In this paper, I propose a new dynamic production model with multidimensional un-

observed heterogeneity that underly technology differences and captures how firms’ fuel choices

respond to price changes. These differences cause heterogeneity in abatement costs, which gener-

ates heterogeneous responses to carbon pricing. Leveraging minimal assumptions about optimal

input choice and the technology frontier, I quantify the model from a detailed panel of Indian

steel establishments. Based on these estimates, implementing a carbon tax equivalent to 2,000

INR/ton (25 USD/ton) of CO2e leads to a 70% reduction in emissions. But only 18% of this

reduction comes from fuel-switching within existing firms. I find that the larger reductions come

from reallocation of output across firms (58%) and costly reduction in aggregate output (24%).

Substantial heterogeneity in the fuel efficiency of existing furnaces coupled with the limited ge-

ographical reach of natural gas pipelines towards high-emission firms explains the prevalence of

output reallocation relative to fuel switching.
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1 Introduction

The reliance on fossil fuels in many manufacturing processes has profound environmental reper-

cussions. The release of greenhouse gases from fossil fuel combustion is the largest contributor to

climate change, accounting for 75% of total greenhouse gas emissions (UN Climate, 2023). Market-

based policies such as carbon taxes and tradable permit systems have been proposed to induce firms

to internalize the social cost of fuel combustion. One of the main objectives of these policies is to

incentivize firms to adopt cleaner fuels, thereby reducing emissions while maintaining stable levels

of production. The economic costs of such policies, such as loss of output and higher consumer

prices, thus crucially depend on the ability and incentives of firms to substitute between fuels.

Fundamental economic forces that drive firms’ decisions to use different fuels are ubiquitous.

They reflect disparities in prices, technology, and access to critical infrastructures like transportation

networks, all of which vary across space and over time (Scott, 2021; Collard-Wexler and De Loecker,

2015). Yet, little is known about how these forces interact with each other, partly because they

reflect unobserved heterogeneity and forward-looking considerations that are difficult to quantify.

The incentives of firms to adopt a new fuel in response to a policy may vary substantially based

on private information about how efficiently they expect to use this new fuel. Similarly, the ability

of firms to substitute between existing fuels may be limited or enabled by specific manufacturing

processes.

This paper proposes a new dynamic production model that combines multiple fundamental

forces to understand how firms make fuel choices and how these choices respond to price changes.

This model differs from existing production models of interfuel substitution in that it captures

plants’ multidimensional fuel choices, fuel productivity heterogeneity due to unobserved technology

differences, and dynamic switching between fuel sets subject to fixed switching costs.1 Leveraging

the approach pioneered by Carlson, Burtraw, Cropper and Palmer (2000) and Atkinson and Luo

(2023), I show that these factors provide a microfoundation for abatement costs heterogeneity that

reflects the ability of firms to substitute towards cleaner fuels in the short and long run. Combined

together, these factors thus generate heterogeneous and dynamic responses to price changes that

have important implications for carbon policy.

While there is a significant body of work estimating production functions, understanding the

heterogeneity and dynamics underlying firms’ input selection when they can choose from multiple

input combinations poses new challenges.2 One of these challenges is quantifying input-specific

productivity for an input a firm has never used. Leveraging minimal assumptions about optimal

input choices and the technology frontier along with a detailed panel of Indian steel plants between

1The vast majority of papers on interfuel substitution considers firms’ fuel sets to be fixed in time and does not
account for fuel-specific productivity. See Ganapati, Shapiro and Walker (2020); Hyland and Haller (2018); Wang and
Lin (2017); Ma, Oxley, Gibson and Kim (2008); Cho, Nam and Pagan (2004); Pindyck (1979)

2See Demirer (2020); Gandhi, Navarro and Rivers (2020); Zhang (2019); Grieco, Li and Zhang (2016); Ackerberg,
Caves and Frazer (2015); Levinsohn and Petrin (2003); Blundell and Bond (2000); Olley and Pakes (1996).
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2009 and 2016, I quantify the rich heterogeneity in plants’ incentives and ability to substitute

between fuels. The panel features detailed information about plant-specific specific input prices

and quantities along with location within 775 districts, allowing me to interpret this heterogeneity

in the context of plants’ proximity to key infrastructures such as coal mines and natural gas pipeline

networks.

I then use the model to predict how Indian steel plants would respond to a range of different

carbon taxes over an horizon of 40 years. India is the second largest steel producer, and steel is

one of India’s most polluting industries, with coal accounting for nearly 70% of its energy sources.

I perform counterfactual policy simulations by imposing a carbon tax levied on fossil fuels, varying

the level of the tax. I find that cutting emissions by 50% relative to a no-tax scenario entails a

reduction of output by 6.5%. In contrast, under an economy in which all fuels are assumed to

be equally productive across firms, as is standard in the production function and abatement costs

literature (Atkinson and Luo, 2023; Hawkins-Pierot and Wagner, 2022; Shapiro and Walker, 2018;

Fowlie, Reguant and Ryan, 2016; Carlson, Burtraw, Cropper and Palmer, 2000), I find that obtaining

the same 50% reduction in emissions leads to a 12% reduction in output, thus overestimating the

output costs of such a policy by almost 100%.

Multidimensional heterogeneity significantly reduces the predicted economic cost associated with

reducing emissions because it improves the ability of the carbon price to target high-emission plants.

Plants that are more productive at dirty fuels relative to cleaner fuels have a higher marginal

abatement cost because they are less willing to substitute away from their most productive fuels.

Consequently, they face a larger increase in their marginal cost, pass a larger portion of the tax to

consumers, and become less competitive relative to plants that are more productive at using cleaner

fuels. My results thus provide quantitative support for the long-established idea in environmental

economics that firm-level heterogeneity in abatement costs improves the effectiveness of market-

based mechanisms relative to command-and-control regulation (Goulder and Parry, 2008).

In the Indian steel context, the carbon tax generates a significant reallocation of output from

plants using large coal-powered blast furnaces in Eastern India to cleaner plants in Western India.

This reallocation of output is the main channel to reduce emissions. With a carbon price equivalent

to $25 U.S. dollars per ton of carbon, 58% of emissions reduction come from output reallocation,

24% from an aggregate reduction in output and only 18% from plant-level fuel substitution. Large

degrees of fuel specialization due to fuel productivity coupled with high fuel switching costs explain

the lack of fuel substitution, capturing significant technology lock-in.

To tackle this technological lock-in, I study a subsidy that reduces the fixed cost of natural gas

adoption and find that it is not a cost-effective tool to reduce emissions. I find that 90% of the

beneficiaries from the subsidy are inframarginal plants who would have switched to natural gas

regardless, which significantly increases the cost of incentivizing a meaningful change in natural

gas adoption. I estimate the cost to increase natural gas adoption by five percentage points at the
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equivalent of $2.793 billion U.S. dollars over 40 years, amounting to 12% of the industry’s profits

in the same periods.

Quantifying the role of fossil fuels in production in this context requires overcoming two im-

portant measurement issues. First, the energy plants use in production is unobserved because it

depends on how plants use fuels. That is, the energy service that a plant receives is different from

the physical quantity of fuels it uses, measured in common heating potential units. The wedge

between a fuel’s heating potential and the energy service it provides reflects the fuel’s productivity.

Second, plants choose fuel sets on the basis of unobserved heterogeneity, such as how productive

they would be at using alternative fuel combinations. For instance, a plant can choose to use coal

because it anticipates high coal productivity and low gas productivity. However, the plant’s gas

productivity remains unobserved to the researcher.

I address these measurement issues in three steps. First, I identify the latent quantity and

price of energy services by adapting the methods of Grieco, Li and Zhang (2016). This method

relies on optimality conditions from profit maximization to map observed relative input spending

to unobserved relative input quantities. Second, I estimate the function that maps fuels to energy

services following Zhang (2019) and Blundell and Bond (1998, 2000). This allows me to recover

the distribution of fuel productivity across plants. Third, I adapt Arcidiacono and Jones (2003)

to jointly estimate fixed switching costs and the distribution of fuel productivity for unused fuels.

Using this three-step approach, I recover all production function parameters, the distribution of fuel

productivity, and switching costs between fuel sets. Lastly, I estimate the elasticity of substitution

between output varieties following Ganapati et al. (2020). These estimates allow me to conduct

policy counterfactuals that affect plants’ fuel choices.

The production model that I estimate is consistent with recent evidence suggestive of hetero-

geneity in fuel productivity and high fixed costs of fuel adoption. Lyubich, Shapiro and Walker

(2018) find that firms vary substantially in energy and CO2 productivity. These disparities in pro-

ductivity are due to varying heat efficiency that different fuel-burning technologies provide (Allcott

and Greenstone, 2012), energy retrofit efforts to curb energy waste (Christensen, Francisco and

Myers, 2022), unobserved fuel quality (e.g. anthracite vs. bituminous coal), and intangible factors

such as the ability of workers to use different fuels and management practices (Gosnell, List and

Metcalfe, 2020). As in Scott (2021), I find significant fixed costs and time commitments associated

with adopting natural gas. These costs encompass technological adaptations, new storage facilities,

and transportation infrastructure, all microfoundations that my approach captures.

Heterogeneity in fuel-specific productivity also provides a microfoundation for abatement cost

heterogeneity because it affects plants’ willingness to substitute between fuels. I thus contribute to a

longstanding literature that estimates marginal abatement costs (Atkinson and Luo, 2023; Shapiro

and Walker, 2018; Culler and Mansur, 2017; Carlson, Burtraw, Cropper and Palmer, 2000). These

fuel-specific productivity differences, along with dynamic switching between fuel sets, also provide
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a cautionary tale against aggregate production functions to study fuel substitution, common in

the integrated assessment literature (Miftakhova and Renoir, 2021; Golosov, Hassler, Krusell and

Tsyvinsky, 2014), because such production functions will not be invariant to policy changes.

The production model also reflects important channels of firm responses to changes in fuel prices.

Numerous empirical studies have shown that firms respond to changes in fuel cost by substituting

across fuels (Alpino, Citino and Frigo, 2023; Ahmadi and Yamazaki, 2020; Andersson, 2019), but

also by passing on the cost increase to consumers, thereby reducing output (Fontagné, Martin and

Orefice, 2023; Ganapati, Shapiro and Walker, 2020; Gittens, 2020). While both types of responses

can reduce emissions, their welfare implications are unequal and my model provides a cohesive

framework to aggregate these responses and relate them to marginal abatement costs.

To estimate this model, I also contribute to the literature on production function estimation

in industrial organization3. I make a methodological contribution by showing how to identify and

estimate a dynamic production function with input-augmenting productivity and dynamic input

selection. I solve this problem by drawing from methods in the dynamic discrete choice literature

with unobserved heterogeneity (Arcidiacono and Jones, 2003; Arcidiacono and Miller, 2011).

Within the production function estimation literature, my paper most closely relates to Collard-

Wexler and De Loecker (2015), who study technological change in the U.S. Steel Industry (par-

ticularly the introduction of electric arc furnaces) and Hawkins-Pierot and Wagner (2022), who

estimate the energy productivity of manufacturing plants and its implication for technology lock-in.

I complement the former by emphasizing the role of fuels and emissions as part of this technological

change. I complement the latter by decomposing energy productivity into the relative productivity

of different fuels, and I show that this distinction is crucial to understanding the heterogeneous

impact of a carbon tax.

The rest of the paper is structured as follows: Section 2 presents an overview of the Indian

steel dataset. Section 3 presents some key evidence of plant-level decisions that motivate modeling

choices. Section 4 presents the model in detail. Section 5 presents identification results for the

model. Section 6 presents the main estimation results. Finally, Section 7 presents the results of the

counterfactual experiments.

3See footnote2 for details on this literature.
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2 Data

I use longitudinal data on prices and quantities of all inputs and outputs from Indian steel establish-

ments. Additionally, I observe plants’ locations across 700 districts, which I link to data on India’s

natural gas pipeline network. The panel comes from the Indian Survey of Industries (ASI) and

covers 2009-2016. It is a restricted-use dataset that covers all manufacturing establishments with

at least 100 workers and a representative sample of establishments with fewer than 100 workers.

The sample is stratified at various levels, including number of workers and location. See Appendix

A.1 for details. The ASI contains information on prices and quantities of Coal, Oil, Electricity, and

Natural Gas, which I convert to million British thermal units (mmBtu) following standard practices

by the U.S. Environmental Protection Agency (EPA, 2022). I remove the 1% left and right tails of

plant-level inputs and output due to the presence of outliers in the ASI.4

To convert nominal into real units, I follow Harrison, Hyman, Martin and Nataraj (2016) by

deflating output with industry-specific wholesale price indices (WPI), labor with the consumer

price index (CPI), intermediate materials with the aggregate wholesale price index, labor with the

consumer price index (CPI), and capital stock with an India-specific capital deflator from the Penn

World Table (Feenstra, Inklaar and Timmer, 2015).

Emissions To get establishment-level measures of greenhouse gas emissions, I convert units of

potential energy (mmBtu) of each fuel into metric tons of carbon dioxide equivalent (CO2e). During

combustion, each mmBtu of fuel releases some quantity of carbon dioxide CO2, methane CH4, and

nitrous oxide N2O into the atmosphere, which varies by industry based on standard practices in

India (Gupta, Biswas, Janakiraman and Ganesan, 2019, Annexure 3). I then convert emissions of

these three chemicals into carbon dioxide equivalent (CO2e) using the Global Warming Potential

method (GWP, see Appendix A.2).

3 Facts about Emissions and Fuels in India

Using this data, I highlight facts about fuel usage and carbon emissions that motivate my choice of

India’s Steel sector to conduct this analysis and influence modeling decisions. Many of these facts

are not specific to either India or steel.

Fact 1: High Pollution Levels from Indian Steel Establishments

In Table 1, I show that total annual greenhouse gas emissions from Indian Steel plants average

25 million tons of CO2e, accounting for 31% of annual emissions in Indian manufacturing (Dhar,

Pathak and Shukla, 2020). This high emission level is attributed to the sizeable aggregate share

of coal as part of the energy mix, averaging 70%. This share is significantly larger than in other

4The ASI dataset is known to have such outliers, typically due to reporting errors that are inconsistent with a
wide range of official statistics (Bollard, Klenow and Sharma, 2013).
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Indian manufacturing industries and larger than in Steel manufacturing abroad. Indeed, switching

from coal to gas has contributed significantly to the manufacturing clean-up in developed economies

(Rehfeldt, Fleiter, Herbst and Eidelloth, 2020).

Table 1: Descriptive Statistics for Steel Manufacturing (2009-2016)

Average Annual Revenue Annual Average Emissions Aggregate Aggregate
Industry by Plant (Million USD) (Thousand tons CO2e) Energy Input Share Coal Fuel Share

Steel 19.41 29.34 0.13 0.72
Other 6.18 8.52 0.13 0.37

Note: The energy input share is calculated as the aggregate spending on energy by industry, as a fraction of total
spending on labor, materials, and energy. It is then averaged across years. Similarly, the coal fuel share is calculated
as the aggregate share of coal (in mmBtu) relative to other fuels in each industry, averaged across years.

Fact 2: Indian Steel Establishments Use Different Fuel Sets

Steel-producing plants use different fuel sets, and most fuel sets include oil and electricity. Most

of the variation in fuel sets comes from whether plants use coal or natural gas. see Table 2.

There are multiple reasons for this heterogeneity. Plants can use different fuel-burning technologies

during the steelmaking process. To turn iron ore into iron, blast furnaces use coke (coal), whereas

direct reduced iron furnaces use either coal or natural gas. To turn iron into primary steel, basic

oxygen furnaces can use various fuel combinations, whereas electric arc furnaces discharge electricity

through an electric arc.

Table 2: Distribution of Fuel Sets Across Steel Plants

Percentage of Plants Output Share

Oil, Electricity 51.3 44.9
Oil, Electricity, Coal 19.3 21.2
Oil, Electricity, Gas 10.8 25.7
Oil, Electricity, Coal, Gas 7.4 3.4
Other 11.1 4.8

Notes: this table shows the distribution of fuel sets across plants. The “Other” category comprises any other com-
binations of the same four fuels. Variation in fuel sets is not driven by variation in the variety of steel produced. In
Appendix A.3, I show that a similar distribution exist within different varieties of steel produced.

Many reasons explain why plants use different fuel sets, some of which have geographical under-

pinnings. In Figure 1, I document a concentration of coal usage in Eastern and Southern India and

a concentration of natural gas usage in Eastern India. Many states in Eastern India form a region

colloquially known as the “Steel Belt”, due to the prevalence of coal and iron ore mines. Plants

with coal-powered Blast furnaces tend to be located near these mines. Moreover, this region also

lacks critical infrastructure, such as natural gas pipelines for plants to adopt technologies that rely

on cleaner fuels.

This heterogeneity in fuel sets has two other noteworthy implications. First, burning coal releases

more CO2e than burning natural gas. Second, plants with more fuels have access to additional
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Figure 1: Spatial Variation in Key Infrastructures and Fuel Usage

(a) Natural Gas Pipeline Network (b) Location of Coal Mines

(c) Gas Consumption by District (d) Coal Consumption by District

Notes: the maps on the bottom show the distribution of (log) natural gas and coal consumption across Indian districts.
Each shade corresponds to a decile. Darker areas correspond to districts with more fuel consumption. The maps on
the top show the distribution of key infrastructures: natural gas pipelines (left) and coal mines (right). Natural
gas pipeline transportation tariffs are organized by zones, where each zone corresponds to 250km segments along a
pipeline. Zone 1 is the closest to the source of the pipeline. Data on coal mines was taken from Pai and Zerriffi (2021).

substitution margins, allowing them to better hedge against fuel price volatility owing to global

supply and demand fluctuations. To see this, I provide correlational evidence that plants’ relative

fuel quantities respond to changes in relative fuel quantities in Table 3.

Fact 3: Indian Steel Establishments Often Switch Between Fuel Sets

Not only is there heterogeneity in fuel sets but also a significant prevalence of switching between

fuel sets, which occurs when a plant uses a different combination of fuels between two years (e.g.

from oil and electricity to oil, electricity, and gas). On average, Figure 2 suggests that 15% of

plants add a new fuel, and 15% drop an existing fuel from their set every year. Overall, I show

in Table 4 that 40% of unique plants add and drop fuel at least once in the sample. Steel plants

typically switch fuels by attaching different burners to existing furnaces. There are many reasons

why plants want to switch. The development of new technologies may increase the heat efficiency

of some fuels. Large and persistent fuel price shocks incentivize plants to readjust their fuel mix.

Expanding transportation infrastructures, particularly pipeline networks, decreases fixed costs and

eases access to new fuels (Scott, 2021).
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Table 3: Preliminary Evidence of Fuel Substitution

∆ ln p

∆ ln e

Coal/Oil
-1.12***
(0.13)

-1.25***
(0.14)

-1.23***
(0.14)

Coal/Elec
-0.90***
(0.07)

-0.92***
(0.07)

-0.89***
(0.07)

Coal/Gas
-1.11***
(0.08)

-1.1***
(0.10)

-1.10***
(0.08)

Gas/Oil
-0.96***
(0.05)

-0.96***
(0.08)

-1.00***
(0.08)

Gas/Elec
-0.95***
(0.05)

-0.96***
(0.05)

-0.97***
(0.05)

Oil/Elec
-0.71***
(0.10)

-0.67***
(0.16)

-0.96***
(0.16)

Control for ∆ capital Y Y Y
Year FE Y Y
Controls for ∆ labor and materials Y

Standard errors in parentheses

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Notes: this table was constructed from the following regression specification of changes in relative log fuel prices ∆ ln p
on changes in relative log fuel quantities ∆ ln e. For any two fuels f ̸= j: ∆ ln(efit/ejit) = β0 + β1∆ln(pfit/pjit) +
Xt
itβ + uit. Where i indexes plants and t indexes years.

Figure 2: Fuel Set Switching Across Years
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Notes: this figure shows the fraction of plants that add a new fuel or drop an existing fuel between year t and t− 1,
starting from 2010 all the way until 2016.

Table 4: Fraction of Unique Plants that Add and Drop a Fuel At least Once

Adds New Fuel Drop Existing Fuel Both Add and Drop

Yes (%) 39.4 39.6 26.0

Notes: this table shows the fraction of unique plants that add a fuel at least once in the sample, and similarly for
plants that drop a fuel at least once. This is an underestimate of the prevalence of fuel switching because plants are
only observed between 2009 and 2016.

4 Model

Consistent with these facts, I develop and estimate a rich dynamic production model to quantify

plants’ fuel choices. Each period, plants have access to a set of fuels from a combination of oil,

natural gas, coal, and electricity. Fuels are combined to produce energy that goes into an outer nest
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of production. Plants can choose to change fuel sets across periods in a dynamic discrete choice

framework. There are fixed costs for adding new fuels and salvage values from dropping existing

ones. I first present the production structure for a given plant in a static setting and then consider

inter-temporal decisions. Throughout the exposition, subscript i refers to a plant, and t refers to a

year.

4.1 Production Model

There are two levels of production, which correspond to two nests. The outer nest is a CES

production function and features Hicks-neutral productivity zit, labor Lit, capital Kit, intermediate

inputs Mit, and energy Eit. Following Grieco et al. (2016), the production function is explicitly

normalized around the geometric mean of each variable X =
(∏n

i=1

∏T
t=1Xit

) 1
nT

.5 Output is

produced as follows:

Yit

Y
= zit

(
αk

(Kit

K

)σ−1
σ

+ αL

(Lit
L

)σ−1
σ

+ αM

(Mit

M

)σ−1
σ

+ αE

(Eit
E

)σ−1
σ

) ησ
σ−1

s.t. αL + αK + αM + αE = 1,

(1)

where σ ≥ 0 is the elasticity of substitution between inputs, and η > 0 is the returns to scale. In

the outer nest, plants choose input quantities given input prices, which include energy, Eit. Given

the current fuel set Fit ⊆ F = {oil, gas, coal, elec}, plants combine all fuels available to produce a

quantity of energy Eit in the inner nest of production:

Eit

E
=

( ∑
f∈Fit

(
ψfit

efit
ef

)λ−1
λ

) λ
λ−1

. (2)

efit refers to the quantity of fuel f for plant i in year t. pfit and ψfit are the corresponding fuel price

and productivity, respectively. The fuel-specific productivity terms are novel; they allow for flexible

variation in input usage and heterogeneity in fuel substitution. Plants specialize in fuels that they

can use more efficiently, which means that different plants are affected differently by changes in

fuel prices. This heterogeneity is especially relevant in the context of a carbon tax, which raises

prices of dirty fuels more than clean fuels. For example, plants specializing in dirty fuels such as

coal will bear a disproportionate share of the tax burden. While initially unobserved, I recover fuel

productivity for each plant each year by exploiting profit maximization.

5All CES functions are either implicitly or explicitly normalized around a point (León-Ledesma, McAdam and
Willman, 2010). I chose the geometric mean as a normalization point to be consistent with the literature.
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Moreover, allowing plants to have different fuel sets Fit and to switch between them is also novel;

plants with a larger fuel set have more substitution possibilities when facing changes in fuel prices.

This option value creates another layer of heterogeneity in response to carbon taxation. Larger and

more productive plants with a larger fuel set will have an easier time substituting out of a carbon

tax than smaller plants with smaller fuel sets.

These two novel features are a significant departure from the literature, where most previous

papers that estimate a production function with fuels do not allow for fuel-specific productivity and

do not allow for fuel sets to vary within the same production function (Hyland and Haller, 2018;

Ma et al., 2008; Pindyck, 1979; Joskow and Mishkin, 1977; Atkinson and Halvorsen, 1976). More

recently, Hawkins-Pierot and Wagner (2022) allowed for the productivity of the total energy bundle

to vary across plants. While this allows for heterogeneity in the substitution between energy and

other inputs, it does not capture salient features of fuel consumption and differential responses to

fuel price changes.

The elasticity of substitution between fuels λ plays a crucial role in this model. It determines the

option value a plant gets by expanding its fuel set Fit. As long as fuels are gross substitutes (λ > 1),

there is an option value to have more fuels due to additional substitution margins. However, the

lower λ is, the larger the option value. A lower λ implies that marginal products from a given

fuel decrease faster with quantity, so there are larger marginal gains from adding a new fuel6. In

Online Appendix B.1, I show that this option value helps plants hedge against fuel price shocks and

quantity shortages. Next, I show how plants compete and set prices.

4.2 Static Decisions

Assumption 1. Plants produce different output varieties and engage in monopolistic competition.

On the demand side, there is a representative consumer with quasi-linear utility over the total

output produced Yt and an outside good Y0t. Steel consumption is widespread in India, and the

majority of demand comes from housing construction, infrastructure, and automobiles. Total output

is produced by aggregating all the varieties with standard Dixit-Stiglitz preferences. Steel plants

produce a wide variety of steel products. There are 404 varieties produced by plants in the ASI, none

of which has a disproportionate market share. Ferrous products from direct reduction of iron ore

is the most common variety with a 5.5% market share. See the online appendix for details. Given

a mass of Nt operating plants, income It, and an aggregate demand shock eΓt , the representative

consumer solves:

6This option value is similar to the concept of gains from variety in the trade literature investigating the composition
of intermediate inputs (Ramanarayanan, 2020; Goldberg, Khandelwal, Pavcnik and Topalova, 2010; Kasahara and
Rodrigue, 2008; Broda and Weinstein, 2006; Romer, 1990; Ethier, 1982)
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max
{Yit}

Nt
i=1,Y0t

U = Y0t +
eΓt

θ

(
1

Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) θρ
ρ−1

s.t. Y0t +

∫
Ωi

PitYitdi ≤ It,

(3)

where ρ > 1 is the elasticity of substitution between varieties, and θ ∈ (0, 1) indexes the substitution

between consumption of the differentiated varieties and the outside good. Following Helpman and

Itskhoki (2010), I restrict θ < ρ−1
ρ , which ensures that output varieties are more substitutable

between each other than with the outside good. These quasi-linear CES preferences were first

proposed by Helpman and Itskhoki (2010) and provide analytical convenience for welfare evaluation.

Quasi-linear preferences are standard in the literature on externality taxation (Fowlie et al., 2016).

In this particular instance, it allows me to use the social cost of carbon (SCC) to quantify externality

damages, expressed as the net present value of future climate damages from emissions.7 Externality

damages affect consumption of the outside good by varying aggregate income and thus directly

affect consumer surplus. Solving the representative consumer’s problem in (3) yields the following

downward sloping demand for each variety Yit, which I augment with an idiosyncratic ex-post

demand shock eϵit :

Yit =
eΓ̃t

Nt
P−ρ
it P

ρ(1−θ)−1
1−θ

t eϵit , (4)

where eΓ̃t = eΓt
1

1−θ is a demand shock and Pt =
(

1
Nt

∫
P 1−ρ
it di

) 1
1−ρ

is the CES aggregate price index

across all varieties. Detailed derivations can be found in Appendix B.1. In Appendix C.1, I show

robustness checks on this demand specification by allowing for nested CES demand across various

categories of steel varieties.

4.2.1 Static Profit Maximization

To avoid notation clutter, I will define X̃it ≡ Xit
X

for normalized quantities and p̃xit ≡ pxitX for

normalized prices from now on. Given a set of fuels Fit ⊆ F, technological constraints, inverse
demand, and all input prices, the plant chooses input quantities that maximize static profits:8

7This is the approach typically taken in applied microeconomics. An alternative approach in macroeconomics relies
on integrated assessment models (IAM) to explicitly study the dynamic relationship between aggregate emissions and
the concentration of CO2 in the atmosphere, which affects future aggregate output in various ways. See Hassler et al.
(2020, 2019); Golosov et al. (2014); Nordhaus (2008).

8I derive the decision of plants under the assumption that plants flexibly rent capital with a unit cost of capital
rkt. While I use this assumption to reduce the computational burden in the dynamic discrete choice model of fuel
sets, I do not need nor use this assumption to estimate the production function.
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max
Kit,Mit,Lit,{efit}f∈Fit

{
Pit(Yit)Yit − wtLit − rktKit − pmitMit −

∑
f∈Fit

pfitefit

}

s.t. Ỹit = zit

[
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αE

( ∑
f∈Fit

(ψfitẽfit)
λ−1
λ

) λ
λ−1

σ−1
σ

] ησ
σ−1

Pit(Yit) =

(
eΓ̃t

NtYit

) 1
ρ

P
1+ρ(θ−1)
(θ−1)ρ

t .

(5)

The nested structure of production is such that it can be expressed in two stages:

1. Plants choose fuel quantities to minimize the cost of producing energy (inner nest):

Given a fuel set Fit and fuel prices (which are observed and vary across plants and years), plants

buy the combination of fuels that minimizes the cost of producing a given unit of energy, subject to

the technology constraint in Equation 2. The achieved minimum of this problem is an energy cost

function C(Ẽit) that satisfies:

C(Ẽit) =
( ∑
f∈Fit

( p̃fit
ψfit

)1−λ) 1
1−λ

Ẽit

= pẼitẼit =
∑
f∈Fit

pfit.efit,

where the unobserved price of realized energy p̃Eit corresponds to a CES price index in fuel prices

over productivity. Constant returns in the energy production function imply that the marginal cost

of realized energy is the price of realized energy and is constant MC(Ẽit) = pẼit . This price of

energy is important because it captures all relevant dimensions of heterogeneity: fuel prices pf , fuel

productivity ψf and fuel sets F .

2. Plants choose inputs to maximize static profit (outer nest):

Given a cost-minimizing allocation of fuels that produce a quantity of energy, plants pay a

price pEit for each unit of energy. They take this price as given when choosing the quantity of

energy because pEit is only a function of the optimal relative allocation of fuels, not the scale of

energy. Then, at the beginning of each period, plants start with a set of fuels Fit ⊆ F, observe
their Hicks-neutral productivity zit, productivity for each fuel {ψfit}f∈Fit , and all input prices

{wit, rkit, pmit, {pfit}f∈Fit}. Together with the years of production, these form a set of state vari-

ables sit. Given these state variables, plants maximize profits, which yield a period profit function

π(sit,Fit).
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4.3 Inter-temporal Fuel Set Choices

Inter-temporal fuel set choice

Every period, plants take expectations over the evolution of state variables and choose a fuel set

for the next period F ′ to maximize expected discounted lifetime profits:

V (sit,Fit ∈ F) = max
F ′

{
π(sit,Fit)︸ ︷︷ ︸
static profits

−K(F ′ | Fit, sit) + σϵϵF ′it︸ ︷︷ ︸
fixed switching costs

+β E[V (sit+1,F ′) | sit]︸ ︷︷ ︸
continuation value

}
,

where K(F ′ | Fit, sit) is the net cost of switching from fuel set F to F ′ and ϵF ′
it
capture idiosyncratic

shocks to these switching costs. I allow fuel set switching costs to vary by plant size (proxied by

Hicks-neutral productivity zit) and whether a plant is in a district d that has access to natural gas

pipelines9:

K(F ′ | Fit, sit) = k(F ′ | Fit, di) + γ(F ′ | F) ln zit.

The switching cost function k(F ′ | Fit, di) in Table 5 is composed of two types of arguments. First,

there are fixed costs of adding a fuel κf . Second, there are salvage values that plants obtain from

dropping a fuel γf . While I call them salvage values, they are not restricted to be positive. Since

90% of plants in the dataset always use electricity and oil, I assume that the choice set of plants

is as follows, where e = electricity, o = oil, g = gas, c = coal: F =
{
(oe); (oge); (oce); (ogce)

}
and

restrict the sample accordingly. In the next Section, I show how this model can be estimated.

Table 5: Fuel Set Switching Cost Matrix — k(F ′ | F , d)

F oe oge oce ogce

oe 0 κg(d) κc κg(d) + κc
oge −γg 0 −γg + κc κc
oce −γc −γc + κg(d) 0 κg(d)
ogce −γg−γc −γc −γg 0

Notes: rows correspond to fuel sets today F , whereas columns correspond to fuel sets next period F ′. I allow fixed
costs for natural gas to vary by plants’ proximity to the natural gas pipeline network in a binary fashion, where d = 0
if plants have no access to pipelines and d = 1 if plants have access to pipelines. I define plants as having access to
pipelines if they are located in a district in which a pipeline directly passes or in a district immediately adjacent to a
district in which a pipeline passes.

9Plant size is endogenous, but a Ceteris paribus increase in zit increases the scale of a plant’s operation. Scott
(2021) shows that proximity to the natural gas pipeline network decreases the fixed cost of adding natural gas. Plants
too far from the pipeline network can use liquified natural gas (LNG) but need access to a gasification terminal,
which can be very costly. In Online Appendix A.3.3, I show that plants that experienced an expansion of the pipeline
network in their district between 2008 and 2016 were more likely to add natural gas to their mix.
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5 Identification and Estimation

The model is estimated in four steps using a novel combination of methods. First, I use the cost-

shifter of Ganapati et al. (2020) as an instrument to estimate demand. Second, I adapt the method

of Grieco et al. (2016) in order to estimate the outer production function in the presence of an

unobserved input (energy). Third, I estimate the energy production function following recent de-

velopments in production function estimation with input-augmenting productivity (Demirer, 2020;

Zhang, 2019; Doraszelski and Jaumandreu, 2018), combined with dynamic panel methods (Blundell

and Bond, 1998, 2000, 2023). Fourth, I estimate fixed costs in a dynamic discrete choice framework

in the presence of unobserved heterogeneity following Arcidiacono and Jones (2003), allowing me

to capture systematic differences in fuel productivity for fuels that plants are not currently using.

Splitting the estimation into four subsequent stages allows for tractability and does not necessitate

that I impose subsequent assumptions on each previous stage. As such, while capital is assumed to

be rented flexibly to solve firms’ dynamic discrete choice problem, I do not make any assumption

on capital when estimating the production function.

5.1 Estimating Elasticity of Demand

I estimate demand from observed output prices and quantities using the demand equation (4):10

lnYit = Λt − ρ lnPit + ϵit, (6)

where Λt = Γ̃t + ln
(

1
Nt

)
+ ρ(1−θ)−1

1−θ lnPt contains both the unobserved aggregate output price

index Pt and aggregate demand shocks Γ̃t. Due to standard simultaneity bias, the elasticity of

demand ρ is not identified from price and quantity data alone. To solve this issue, I instrument

output prices with a Barktik style shift-share cost shifter proposed by Ganapati et al. (2020) and

used by Hawkins-Pierot and Wagner (2022). The instruments have two components: an exogenous

shock to aggregate fuel prices (the shift) and a pre-shock variation in exposure to aggregate fuel

prices by Indian States (the share):

zs,t =
[
p−s,t,f ∗ σs,2008,f

]
, f ∈ {coal, gas, oil}

p−s,t,f is the average price (leaving out state s) of fuel f in year t, and acts as an exogenous shock

to production cost. This is because much of aggregate fuel price variation stems from worldwide

10In Appendix C.1, I explore more flexible demand specifications. Since plants produce various steel varieties that
can be categorized, I allow for a nested CES demand specification allowing for different elasticities of substitution
within and across categories. I find that results are quantitatively very similar to the simple CES specification.
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demand and supply variation induced by geopolitical turmoil, aggregate technological evolution,

and growth. σs,2008,f is the pre-sample aggregate share of fuel f used to generate electricity in state

s. Variation in the price of a fuel will induce more variation in electricity prices in states that use

more of that fuel to generate electricity. This creates exogenous variation in exposure to aggregate

fuel price shocks since all plants use electricity as an input. Moreover, the shares are taken in 2008

(before the sample starts) and are thus unaffected by shocks to fuel prices.

For the remaining parts of the demand equation, the aggregate output price index Pt is part of the

year fixed effect in equation (6) and is endogenously determined by the elasticity of demand ρ. I first

estimate demand using year dummies Λt and then solve for the price index ex-post given the estimate

of ρ̂, observed output prices Pit and the number of plants Nt, Pt =
(

1
Nt

∑
i=1:Nt

P 1−ρ̂
it

)1/(1−ρ̂)
. I

then separately recover the elasticity of the outside good θ from the aggregate demand shifter Γ̃t in

a simple time series regression of the year dummies Λt on the output price index and a constant.

5.2 Identification of outer production function

In the outer nest, the main unobserved quantity that departs from standard models is realized

energy Ẽit. In contrast to the heating potential of fuels, energy is the output of combining different

fuels, which is unobserved. Under the assumption that plants are price-takers in the input market,

I adapt the estimation method proposed by Grieco et al. (2016) to uniquely recover the price and

quantity of energy when at least one flexible input (labor) is observed.11 The key to this method

relies on using relative first-order conditions to map observed expenditure shares to unobserved

input quantity shares. To see this, one can rearrange the ratio of first-order conditions for labor

and energy from profit maximization in equation 5:

witLit
pEitEit︸ ︷︷ ︸

Expenditure ratio

=
αL
αE

( Lit/L
Eit/E︸ ︷︷ ︸

Quantity ratio

)(σ−1)/σ
. (7)

Given production function parameters, Eit
E

can be recovered from (7) because I observe expen-

ditures for both inputs (recalling that energy expenditure is the sum of fuel expenditures from the

energy production function: pEitEit =
∑

f∈Fit pfitefit) and I observe the quantity of labor. Identi-

fication of Ẽit comes from variation in the relative price of labor to energy, which induces variation

in the expenditure ratio that isn’t one-for-one with relative prices. For a given σ, observed variation

in spending on energy SEit , spending on labor SLit and the quantity in labor Lit implies a unique

quantity of realized energy by the optimality condition between both inputs:12

11The assumption of price-taking in the input market allows for unobserved variation in input prices (the main
motivation underlying the Grieco et al. (2016) paper), which could be related to plant size, productivity, location,
and any other state variables. However, this assumption rules out quantity discounts.

12Only when σ = 1 (Cobb-Douglas), the percentage change in relative prices is always offset by an equivalent
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Eit

E
=
(peitEit
witLit

) σ
σ−1
(αL
αE

) σ
σ−1 Lit

L
. (8)

Thus, in this setting, one can identify production parameters by replacing Ẽit for (8) in the

production function and exploiting the labor first-order condition to control for the transmission

bias from unobserved hicks-neutral productivity zit to observed inputs, a method that is also used

by Doraszelski and Jaumandreu (2013, 2018). I also use the same method to control for unobserved

price dispersion in the bundle of material inputs.

The main dependent variable is revenues, where euit is an unobserved iid shock that is meant to

capture measurement error and unanticipated demand & productivity shocks to the plant (Klette

and Griliches, 1996). Detailed derivations of the estimating equation can be found in Appendix

C.2. Taking logs of revenues yields the main estimating equation:

lnRit = ln
ρ̂

ρ̂− 1
+ ln

1

η
+ ln

[
witLit

(
1 +

αK
αL

(Kit/K

Lit/L

)σ−1
σ
)
+ pmitMit + pEitEit

]
+ uit. (9)

The main parameters of interest are the elasticity of substitution (σ) and the returns to scale (η)

in (9). The former is identified from observed variation in the capital-to-labor ratio. The latter is

identified because the elasticity of demand was estimated separately in the previous stage. Lastly,

since Ẽit and M̃it were factored out of the production function, the main estimating equation (9)

does not recover αE and αM . To recover αE and αM , I take the geometric mean of relative first-order

conditions in equation (7) for energy and labor and likewise for materials and labor:13

wL/pEE =
αL
αE

; wL/pmM =
αM
αE

αK + αL + αM + αE = 1.
(10)

Then, I estimate (9) subject to (10) with non-linear least squares.14

percentage change in expenditure shares, such that expenditure shares are constant.
13This is the convenience given by the geometric mean normalization of the CES. However, any other normalization

would work but would require more algebra to recover the distribution parameters.
14Consistency of the parameters is shown by Grieco et al. (2016) using the first-order conditions of the NLLS

objective function as moment conditions.

17



5.3 Identification of inner production function for energy

The energy production function in equation (2) can be rewritten by factoring out the productivity

of a fuel that plants always use, such as electricity, and redefining the productivity of all other fuels

relative to electricity, ψ̃fit =
ψfit
ψeit

:

Ẽit = ψeit

( ∑
f∈Fit

(
ψ̃fit

efit
ef

)λ−1
λ

) λ
λ−1

. (11)

At this point, I have an estimate of the quantity and price of energy, (Êit, pÊit) from the previous

stage. I also observe fuel quantities, {efit}f∈Fit , and fuel prices: {pfit =
sfit
efit

}f∈Fit . I show how

to recover the elasticity of substitution λ, and all productivity terms for fuels that plants are

using {ψfit}f∈Fit . To do so, I rely on optimality conditions from the energy cost-minimization

problem coupled with a Markovian assumption on the productivity of electricity. This effectively

combines the dynamic panel approach of Blundell and Bond (2000, 1998) with the method proposed

by Zhang (2019). Relative first-order conditions from the cost-minimization to produce a unit of

energy identify the productivity of fuel f relative to electricity as a function of observables up to

parameter values:

ψ̃fit =
(pfit
peit

) λ
λ−1
(efit
eeit

) 1
λ−1 ef

ee
. (12)

The intuition underlying equation (12) is straightforward: relative fuel productivities equate

relative fuel prices to relative marginal products
pfit
peit

= ψ̃
λ−1
λ

fit

(
eeit
efit

) 1
λ . I then exploit these optimality

conditions by substituting back the implied relative fuel productivity terms (12) into the energy

production function (11) and rearranging:

Ẽit
ẽeit

= ψeit

( ∑
f∈Fit

sfit
seit

) λ
λ−1

, (13)

where sfit ≡ pfitefit is spending on fuel f . The intuition underlying equation 13 is fairly straight-

forward. The left-hand side is the value added of an additional unit of electricity in terms of energy,

while the right-hand side is the contribution of electricity productivity and relative spending on

other fuels to that value added. Naturally, higher electricity productivity increases the value added

of electricity, and higher spending on other fuels also increases the quantity of energy produced
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for a given unit of electricity. The only unobservable left in the energy production function is the

productivity of electricity, which is correlated with current period quantities and spending on fuels

since it is assumed to be known to plants when choosing fuel quantities. To deal with this issue, I

assume that the productivity of electricity follows an AR(1) Markov process with year and plant

fixed effects.15

lnψeit = (1− ρψe)(µ
ψe
0 + µψei ) + µψet − ρψeµ

ψe
t−1 + ρψe lnψeit−1 + ϵψeit . (14)

I then take the log of equation (13) and use the Markov process above to get an estimating equation:

ln ˆ̃Eit − ln ẽeit = Γt + ρψe(ln Ẽit−1 − ln ẽeit−1) +
λ

λ− 1

(
ln
∑
f∈Fit

sfit
seit

− ρψe ln
∑

f∈Fit−1

sfit−1

seit−1

)
+ µ∗i + ϵψeit ,

(15)

where Γt = µψe0 (1−ρψe)+µ
ψe
t −ρψeµ

ψe
t−1 is a year fixed-effect and µ∗i = (1−ρψe)µ

ψe
i is the normalized

plant fixed effect. Since ϵψeit is a shock to the productivity of electricity at time t, it is uncorrelated

with choices made at time t− 1:

E(ϵψeit | Iit−1) = 0

There are two main endogeneity concerns in this model. First, the lagged value added of elec-

tricity and the lagged relative spending on other fuels are correlated with the plant fixed effect µ∗i ,

which biases the persistence of electricity productivity ρψe . This is the standard concern in the

dynamic panel literature. Second, contemporaneous relative spending on other fuels is correlated

with both the fixed effect µ∗i and the innovation term ϵψeit to electricity productivity, which biases

the estimate of the elasticity of substitution λ. Blundell and Bond (2000, 1998), and many others

show that these concerns can be addressed with properly specified moment conditions. I use the

system GMM approach, which combines both level and difference moment conditions as follows:

15The choice of these modified AR(1) processes, where the mean is normalized by the persistence, are standard in
the dynamic panel literature with short panels (Blundell and Bond, 2023). It ensures that the average of each state
variable observed in the data corresponds to the unconditional average of this process. This means that even though
the model is estimated from a short panel (between 2 and 8 years, depending on the plant), forward simulations
multiple years ahead will match the support of the data. It is equivalent to the assumption that the residuals of the
productivity distribution follow an AR(1) process rather than electricity productivity itself.
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E(∆Xi,t−1(µ
∗
i + ϵψeit )) = 0

E(Xi,t−1∆ϵ
ψe
it ) = 0,

for Xi,t−1 ∈ {ln Ẽi,t−1− ln ẽe,i,t−1, ln
∑

f∈Fi,t−1

sfit−1

seit−1
} and likewise for ∆Xi,t−1. Moreover, these mo-

ment conditions yield a consistent estimate of the elasticity of substitution λ under the assumption

that shocks affecting relative fuel spending are persistent. This assumption is consistent with many

geopolitical shocks persistently affecting fuel prices in the market. Lastly, I get standard errors on

the elasticity of substitution using the delta method.

5.4 Identification and Estimation of Fixed Fuel Switching Costs

Each plant has access to a set of fuels Fit and is considering all alternative fuel sets for the next

period: F ′ ≡ Fit+1 ⊆ F ≡ {oe,oge,oce,ogce}. Since all state variables sit are assumed to follow a

Markovian process, I start from the recursive formulation of the problem. The plant chooses a fuel

set next period F ′ to maximize the net present value of lifetime profits:

V (sit, ϵit,Fit) = max
F ′⊆F

{
π(sit,Fit)−K(F ′ | Fit, sit) + σϵϵF ′it + β E(V (sit+1, ϵit+1,F ′) | sit)

}
, (16)

where the fuel set switching cost function, K(F ′ | Fit, sit), was defined in Table 5. σϵ is a parameter

that maps units of the fixed cost shocks to units of profits (dollars). From now on, I define the

parameters governing the switching cost function θ1 = {κg1, κg0, κc, γg, γc} for coal and gas, and θ2

the parameters underlying the evolution of state variables. I use κg1 to denote the fixed cost of

adding natural gas for plants that are located in a district near the pipeline network and κg0 for

plants that are located in a district that isn’t immediately adjacent to the pipeline network. Cost

shocks are assumed to be iid and come from a standardized Type 1 Extreme value distribution,

allowing me to integrate out these shocks analytically and work with the expected value function,

W (sit,Fit) = E(V (sit, ϵit,Fit)):

W (sit,Fit) = γ + σϵ ln

( ∑
F ′∈F

exp
(
π(sit,Fit)−K(F ′ | Fit, sit) + β

∫
W (sit+1,F ′)f(sit+1 | sit)dsit+1︸ ︷︷ ︸

υF′ (sit,Fit)

)1/σϵ)
.

where γ is the Euler–Mascheroni constant and υF ′(sit,Fit) is the choice-specific value function.

Then, the probability of choosing fuel F ′ has a standard logit formulation:
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Pr(F ′ | Fit, sit; θ1, θ2) =
exp
(
υF ′(sit,Fit; θ1, θ2)

)1/σϵ
∑

F∈F exp
(
υF (sit,Fit; θ1, θ2)

)1/σϵ .
Evolution of state variables

Next, I discuss the evolution of each state variable. Plants take expectation over all productivity

terms, fuel prices and material prices. I separate state variables into two categories: non-selected

state variables, which I observe for every plant in every year (ψoit, ψeit, pot, peit, zit, pmit), and selected

state variables, which I only observe when plants are using the relevant fuel (ψcit, ψgit, pcit, pgit). I

assume that plants do not take expectation over the rental rate of capital and aggregate wages to

reduce the computational burden of this problem.

All state variables follow a persistent AR(1) process with time (t) and plant (i) fixed effects. To

reduce the state space, I assume that the persistence for fuel prices and productivity is the same

ρpf = ρψf = ρf . This assumption allows me to define fuel productivity over prices as a single

state variable, which always enters together in plants’ profit function pfit/ψfit through the energy

price index. I refer to plant fixed effects in fuel productivity/prices as fuel comparative advantage,

denoted by µfi .

E
[
ln(ψfit+1/pfit+1) | Iit

]
= (1− ρf )(µ

f
0 + µft + µfi ) + ρf ln(ψfit/pfit). (17)

In this context, A positive (log) fuel price shock is isomorphic to a negative (log) fuel productiv-

ity shock, and vice versa. I also assume a similar process for hicks-neutral productivity ln zit and for

the (log) price of materials ln pmit. These two state variables, together with the price/productivity

of oil and electricity were recovered in previous sections for all plants in all years. Their Marko-

vian processes can be estimated directly using the system GMM approach of Blundell and Bond

(2000). Following Bonhomme and Manresa (2015), I reduce the dimension of plant fixed effects

µi = {µzi , µmi , µoi , µei} by grouping plants using K-means clustering.

For coal and natural gas, the evolution of the price/productivity process depends on whether

plants are initially using coal/gas. If plants are not using coal/gas at t, they start at the initial

condition (equivalent to t = 0) and take expectation over idiosyncratic shocks. ∀f ∈ {coal, gas}:

E
[
ln(ψfit+1/pfit+1) | f /∈ Fit

]
= µf0 + µft + µfi .
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Estimating the distribution of plant-specific comparative advantages for coal and gas only from

plants who currently use gas or coal is likely to be biased due to selection. Recovering the distribution

of µfi from selected plants may not reflect the distribution across all plants, which would bias fixed

costs estimates. In the next section, I show how to recover the distribution of these fuel comparative

advantages for plants that are not currently using gas or coal, jointly with fixed costs following

the approach of Arcidiacono and Jones (2003). Using this approach, I recover the distribution

of fuel comparative advantages that is most likely to rationalize observed fuel set choices, under

the assumption that plants know about their comparative advantage and use that information

to make decisions. Lastly, I allow all shocks to state variables to be arbitrarily correlated in a

multivariate normal distribution with mean zero and a positive semi-definite covariance matrix Σ.

I then discretize the entire state space following Farmer and Akira Toda (2017):

(
ϵoit, ϵ

e
it, ϵ

g
it, ϵ

c
it, ϵzit, ϵmit

)
≡ ϵit ∼ N (0,Σ).

Estimating Fixed Costs and Fuel Comparative Advantages

To learn about the extent to which the distribution of comparative advantage for natural gas and

coal is selected, I follow the algorithm proposed by Arcidiacono and Jones (2003). I assume that the

distribution of comparative advantages comes from finite mixtures with K = 3 points of support

for each fuel. I parameterize the initial guess of the mean and variance of the finite mixture to the

mean and variance of the empirical (selected) distribution (µ̃f , σ̃
2
µf
):

K∑
k

π0fkµfk = µ̃f

K∑
k

(µfk − µ̃f )
2π0fk = σ̃2µf ,

where π0fk = Pr(µfk) is the unconditional probability of being type k, where types refer to support

points of the fuel comparative advantage distribution, and
∑

k π
0
fk = 1. In this context, external

estimation of parameters governing the distribution of random effects from a selected sample of

plants that use these fuels leads to biased estimates of µ̃g, µ̃c, σ̃
2
µg , σ̃

2
µc . Indeed, plants with a larger

comparative advantage for coal are more likely to use coal, and likewise for gas. Thus, I expect

to get upward biases in both the mean of coal and gas. Using the law of total probability, I

can integrate the unconditional distribution of comparative advantages using the full information

(log) likelihood. Assuming there is only one finite mixture over both coal and gas for notation

convenience, and where the distribution of comparative advantages are independent across fuels

such that πk ∈ Π = vec(Πg ⊗Πc), where πkg ∈ Πg and πkc ∈ Πc,
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lnL(F , s | θ1, θ2) =
n∑
i=1

ln

[∑
k

πk

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ2)

]]
+

n∑
i=1

T∑
t=1

ln f(sit | sit−1; θ2).

(18)

In particular, the likelihood in (18) assumes that the state transitions are independent of the

distribution of comparative advantages for coal and gas.16 In principle, the likelihood in (18) can

be maximized directly over the probability weights πk of the finite mixture, the support points

and fixed costs θ1 simultaneously. To ease the computational burden of this problem, I follow the

approach of Arcidiacono and Jones (2003); Arcidiacono and Miller (2011) to sequentially recover

the distribution of unobserved heterogeneity (the finite mixture) and fixed costs using an EM

algorithm. The interested reader can find details in Appendix C.4. Next, I show the results of these

four estimation stages in the Indian steel industry.

6 Estimation Results – Steel Manufacturing

Estimates of the outer production function parameters and demand parameters can be found in

Table 6. The average output and revenue elasticities with respect to intermediate materials are

much larger than those with respect to other inputs and are consistent with the literature (Gandhi

et al., 2020; Grieco et al., 2016; Doraszelski and Jaumandreu, 2013, 2018). This is primarily due

to the importance of iron ore in steel production. Average output and revenue elasticities are

considerably larger for energy than labor and capital due to the large quantities of fuels required to

produce steel. The estimated demand elasticity is also consistent with estimates by Zhang (2019),

who finds a demand elasticity of around 4 in the Chinese Steel industry. Using these estimates,

I can construct estimates of the price pÊit and quantity of the energy bundle for each plant Êit

from the relation first-order conditions in equation 8, which I use to estimate the energy production

function.

Turning to the energy production function in Table 7, results indicate that the elasticity of

substitution between fuels λ̂ is larger than the elasticity of substitution between energy and non-

energy inputs σ̂. This is important because the larger the elasticity of substitution between fuels, the

larger the aggregate gains from carbon taxation (Acemoglu, Aghion, Bursztyn and Hemous, 2012).

More substitution possibilities mean more emission reduction can be achieved by substituting away

from polluting fuels rather than by reducing output, which is a key trade-off in evaluating carbon

policy. Next, I discuss estimates of fixed costs and study the implication of these results for fuel

substitution in the short and long run.

16This assumption isn’t necessary, but it simplifies the computation of the model in the presence of these comparative
advantages. This is possible if the parameter estimates θ̂2 are unbiased from selected data. In Online Appendix C.2,
I show Monte-Carlo simulation results consistent with this assumption.
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Table 6: Outer Production Function Estimation

Production and Demand
Parameters

Average Output Elasticities
Average Revenue

Elasticities

Elasticity of substitution σ̂
1.87
[1.400,3.883]

Labor
0.039
[0.036,0.046]

0.030
[0.029,0.031]

Returns to scale η̂
1.19
[1.098,1.409]

Capital
0.021
[0.012,0.032]

0.016
[0.009,0.024]

Elasticity of demand ρ̂
4.20
[2.788,5.675]

Materials
0.978
[0.902,1.160]

0.745
[0.742,0.749]

“Effective” returns to scale
0.91
[0.89,0.91]

Energy
0.150
[0.139,0.178]

0.115
[0.113,0.117]

Elasticity of outside good θ̂
0.66
[0.559,0.713]

Observations 8,554

Bootstrap 95% confidence interval in bracket (499 reps)

Notes: the average output (revenue) elasticities are defined as the average of the individual output (revenue) elasticity,
where the output elasticity is ∂yit

∂xjit

xjit
yit

for yit ∈ {Yit, Rit} and xjit ∈ {Lit,Kit,Mit, Eit}. “Effective” returns to scale

capture the net curvature in the production function, taking into account downward slopping demand.

Table 7: Estimates of Energy Production Function

Steel

Elasticity of substitution λ̂ 2.367∗∗∗

(0.269)
Persistence of electricity productivity ρ̂ψe 0.659∗∗∗

(0.117)

Observations 3,482

Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: I use the delta method to recover the standard error of λ̂ where σ̂λ = (λ̂ − 1)σ̂γ . Moreover, the number of
observations in the energy production function is lower than in the outer production function. This is because the
method to estimate the energy production function constructs moments that require at least 3 years of observation
per plant to yield consistent estimates (Blundell and Bond, 2000, 1998).

Estimation of Fixed Costs

Fixed costs are reported in Table 8. The estimates of fixed costs encompass both the tangible

expenses related to new fuel-burning technologies and intangible costs associated with fuel adoption.

This includes logistical challenges, new contractual agreements for transportation and storage, as

well as potential opportunity costs from diverting labor away from production. These costs are

substantial, ranging from 40 to 60 million dollars, and align well with the upper echelon of existing

accounting estimates.17

17While recent comprehensive accounting estimates of switching costs are hard to find, a single elec-
tric arc furnace may cost between a few hundred thousand dollars and a few million dollars (Source:
alibaba’s listings https://www.alibaba.com/product-detail/WONDERY-Custom-Made-Siemens-PLC-Industrial_

1600732474634.html), whereas switching from pig iron, typically produced with a coal-powered blast furnace, to
direct reduced iron, typically produced with gas or coal-powered oxygen furnaces would historically cost upwards of
USD 70 millions Miller (1976).
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Table 8: Estimates of Fuel Set Fixed Costs and Salvage Values

Fixed Costs
(Million USD)

Salvage Values
(Million USD)

Natural Gas
Pipeline Access 39.5

19.3
No Pipeline Access 59.9

Coal 43.6 9.2
Total Factor Productivity (100 % increase) 0.11 -1.04

Observations 2,460

Notes: This table shows the fixed cost and salvage value estimates for each fuel in million U.S. dollars. For natural
gas, these costs vary based on whether plants are in a district with access to a natural gas pipeline. The parameter
in front of “Total Factor Productivity” is the effect of doubling productivity on the fixed costs and salvage values
of any fuel and is meant to capture how these costs vary with plant size. The sample size is lower than the energy
production function because I removed the last year of observation since I don’t observe subsequent fuel set choices.

Coal adoption ranges from 40% cheaper to 10% more expensive than gas adoption. This is

because plants without access to high-pressure natural gas pipelines incur 50% higher adoption

costs due to the need for costly alternative transportation methods, such as liquefied natural gas

(LNG). This effect of pipeline accessibility is consistent with findings from Scott (2021) in his study

of U.S. power plants. The observed salvage values for coal and natural gas are multiple orders of

magnitude lower than fixed costs. While fixed costs are nominally very large, the role of plant size

is relatively small, as raising productivity by 1% only leads to an $1, 100 increase in fixed costs and

a $10, 040 decrease in salvage values. Importantly, the combination of substantial fixed costs and

relatively low salvage values likely contributes to situations of technology lock-in, which I discuss in

the next section.

6.1 Selection Bias in Fuel Productivity – Evidence of Technology Lock-in

The problem of technology lock-in is pervasive, as the Indian Ministry of Steel reports that inefficient

plants face difficulties in transitioning out of old technologies:

“The higher rate of energy consumption is mainly due to obsolete technologies including

problems in retrofitting modern technologies in old plants, old shop floor & operating

practices.” Indian Ministry of Steel (2023)

To understand factors that prevent this transition, I revisit the distribution of fuel productivity

by taking into account selection bias in the distribution of fuel comparative advantages. I find

significant evidence of selection bias for both coal and natural gas. Indeed, plants that do not use

natural gas would be 30% less productive at it relative to plants using natural gas, whereas this

effect goes up to 80% for coal. Combined with high fixed costs, this productivity gap undermines

switching from coal to natural gas and exacerbates technology lock-in. This is because plants that

do not currently use natural gas have less to gain from paying the fixed costs, whereas plants that

currently use coal have little to gain from dropping coal.
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Figure 3: Distribution of fuel productivity – Including counterfactual fuel sets
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Notes: This figure shows the distribution of fuel productivity per mmBtu (lnψfit/ef ). For plants using each fuel, it
includes the 95% confidence intervals around the mean. For plants not using each fuel, I compute the distribution
of fuel productivity by simulating draws from the estimated distribution of unobserved heterogeneity (comparative
advantages) in the dynamic discrete choice model, using the conditional probability distribution ρ(µk | Fi, si; θ̂1, θ̂2, π̂).

In Online Appendix D.1-D.2, I further strengthen this argument by showing that plants with

more fuels in their set tend to face a lower marginal cost of energy. This difference is largely

explained by existing variation in fuel productivity rather than the additional substitution margin

that a new fuel provides. In such a context, plants have little incentive to pay the large fixed costs

required to add natural gas.

Spatial differences also explain much of the technological lock-in in the industry. As discussed

previously with Figure 1, may plants using large coal-powered blast furnaces are located in the

“Steel Belt” near coal and iron ore mines in Eastern India. At the same time, the natural gas

pipeline network is developed in Western India but undedeveloped in Eastern India. While Table

8 showed that the direct cost of natural gas increases by 50% without pipeline access, Figure 4

suggests that the opportunity cost for large coal users in Eastern and Southern India would also

be very large due to their high comparative advantage at using coal relative to natural gas. In the

next section, I discuss the critical role that technology lock-in plays in understanding the effect of

a carbon tax.

Model fit

Overall, the estimates of switching costs allow the model to predict quite well the empirical dis-

tribution of fuel set choices and the observed transition patterns between fuel sets. The model

does slightly worse at predicting the transitions for plants that start with all four fuels because it

only represents 8% of the sample. The blue bars (model) are constructed in all figures below by

adding the predicted probability that each plant uses each fuel set, integrated over the conditional

distribution of comparative advantages. Details are given in Online Appendix D.1.
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Figure 4: Spatial Distribution of Estimated Fuel Productivity

(a) Natural Gas (b) Coal

Notes: the figures plot the distribution of (log) productivity for coal and natural gas across Indian districts. Each
shade corresponds to a decile. Darker shades are regions in which plants are more productive at using each fuel.
This distribution only includes plants using each fuel and excludes counterfactual productivity estimates based on the
distribution of comparative advantages.

Figure 5: Unconditional distribution of fuel sets, model vs. data (N = 2, 460)

From Oil, Coal, Electricity (OCE) – N = 584 From Oil, Gas, Electricity (OGE) – N = 294

From Oil, Electricity (OE) – N = 1, 371 From Oil, Gas, Coal, Electricity (OGCE) – N = 211

Figure 6: Conditional distribution of fuel sets (transition), model vs. data

27



7 Externality Mitigation Policies

In this section, I study the effectiveness of various policies in mitigating externality damages from

fuel combustion to improve social welfare. I detail how externality damages are constructed and

perform two counterfactual policy experiments. First, I quantify the trade-off between emission

reduction and output for various levels of fossil fuel taxes, where the tax rate is proportional to

each fuel’s emission intensity (carbon tax). I compare this trade-off with an economy without

heterogeneity in fuel productivity. Second, I discuss the pervasiveness of technology lock-in in this

economy and evaluate a potential solution that uses proceeds from the carbon tax to finance a

subsidy that reduces the fixed cost of natural gas adoption.

Externality Damages

Externality comes from the release of pollutants in the air by the combustion of fuels. All pollutants

are converted into carbon dioxide equivalent (CO2e) using standard scientific calculations from the

U.S. EPA. Then, each unit of fuel f ’s potential energy contributes to contemporaneous greenhouse

gas emissions as follows: 1 mmBtu of ef releases γf short tons of CO2e. γf are fuel-specific emission

intensities calculated using the global warming potential (GWP) method detailed in Appendix A.2.

For example, 1 mmBtu of coal releases roughly twice as much carbon dioxide equivalent in the air

as 1 mmBtu of natural gas γc
γg

≈ 2. Fuel-specific emission intensities define the relative tax rate

between different fuels. See table 9.

Table 9: Example of Average Fuel Prices With and Without Carbon Tax

Fuel
Average Price

(Rupees/mmBtu)
Emission Factor

(Kg CO2e/mmBtu)

Coal 262 100
Oil 665 82
Electricity 1,681 65
Natural Gas 1,307 60

Notes: These prices are averaged across all sample years and all plants. Natural gas is slightly less polluting than
electricity. This is because the vast majority of Indian electricity is generated with either coal or renewables such as
hydro-electricity.

Since the carbon tax is a per-unit tax on fossil fuels pfit + τf , I separate the evolution of

fuel prices/productivity of Equation 17 into two separate processes: one for prices and one for

productivity separately. In practice, from the discrete grid that form the Markov chain describing

the evolution of fuel price/productivity, I construct two separate grids, one for prices and another

productivity. Grid points are found by matching moments of the discrete Markov chain for fuel

prices and productivity with moments from observed fuel prices in the data and estimated fuel

productivity. Details can be found in Appendix D.1. Intuitively, this is akin to decomposing the

shocks to fuel prices/productivity into a shock to prices and a shock to productivity.
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The Equimarginal Principle with Multidimensional Heterogeneity

While both multidimensional heterogeneity in fuel productivity and dynamic fuel switching compli-

cates the graphical analysis of the equilibrium under a carbon tax, the equimarginal principle still

holds. A carbon tax levied on fossil fuels not only equalizes marginal abatement costs (expressed in

forgone profit) across plants, it also equalizes marginal abatement costs across fuels within a plant.

This can be seen by rearranging first-order conditions of the plant’s static profit maximization,

where the carbon tax τ is levied on firms’ total emissions CO2e,it =
∑

f∈Fit γfefit:

[
∂Yit
∂efit

(
P (Yit) + YitP

′(Yit)
)
− pfit

]/
γf = τ ∀f ∈ Fit. (19)

The left-hand side is plant i’s marginal cost of abating one ton of CO2e using fuel f (in terms of

forgone profits), whereas the right-hand side is the carbon tax rate. This equation is key because

it provides a micro foundation for marginal abatement costs. In this highly heterogeneous context,

firms have multiple ways to equalize their marginal abatement costs. In the short run, they can vary

the quantity of each fuel in their set or their output. In the long run, they can pay fixed switching

costs to adopt new fuels or drop existing ones. Critically, because fuel marginal products ∂Yit
∂efit

vary across fuels and across plants, plants will make different decisions to equalize their marginal

abatement costs. This is the benefit of a market-based policy. Despite facing the same tax schedule,

plants and may be more or less targeted by the tax based on input prices they face, their fuel sets,

how productive their are overall, and how productive they are at using different fuels.

7.1 Carbon Tax and the Trade-off between Output and Emission Reduction

In Figure 7, I trace the trade-off between output and emission reduction for various carbon tax

rates. Each point on the curve corresponds to a different level of the carbon tax, and together,

they form a production frontier in output and emission reduction. I simulate the economy with and

without the carbon tax for 40 years starting from 2016, and look at the net present value (NPV)

of outcomes along the entire path. For X = {aggregate output, aggregate emissions} and a given

carbon tax rate τ : E(X(τ)) ≈ 1
S

∑S
s=1

∑40
t=0 β

tXts(τ).

As the level of the tax approaches zero, the economy converges to the no-tax economy with

100% of output and 0% of emission reduction. As the tax level increases, emissions decrease but

so does aggregate output. The production frontier is concave because of the increasing marginal

cost of reducing aggregate emissions, consistent with previous findings by Fowlie et al. (2016). Fuel

substitution (and more generally input substitution) is more effective initially, where much emission

reduction can be achieved by substituting coal with cleaner fuels such as natural gas and electricity.

However, as the carbon tax rate increases, more emission reduction comes at the cost of plants
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scaling down their operation, decreasing aggregate output because marginal plants have already

switched towards cleaner fuels.

Figure 7: Production Frontier in Output and Emission Reduction for Various Carbon Tax Rates

Higher Tax Rate

Lower Tax Rate

(a) Trade-off between Output and Emis-
sion Reduction

(b) Emission Reduction and Output
Across Tax Levels

Notes: This production frontier was constructed by simulating the economy under 21 different carbon tax levels,
ranging from 0 (no tax) to approximately infinity. Linear interpolation is assumed for the trade-off between each tax
level. As the level of the tax approaches infinity, the aggregate output does not reach 0. This is a feature of the CES
production function. Indeed, as fuel prices are extremely high, fuel consumption approaches zero, and plants switch
toward non-energy inputs.

7.1.1 The Role of Heterogeneity in Fuel Productivity

I compare in Figure 8 what happens when removing heterogeneity in fuel productivity from the

economy to highlight its role in the trade-off. To do so, I re-estimate an energy production function

in which plants have heterogeneous energy productivity ψEit, but have the same average fuel pro-

ductivity. Details on the estimation of this production function are in Appendix D.2. Importantly,

this production function matches average fuel quantities and aggregate emissions levels but misses

the heterogeneity in fuel shares across plants: Eit = ψEit

(∑
f∈Fit βfe

λ−1
λ

fit

) λ
λ−1

.

Figure 8: Comparison of Trade-off Across Model Specification

•(93,50)•
(88,50)

Notes: This production frontier compares the baseline economy (orange) with an economy that assumes all fuels are
equally productive (blue).
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The blue production frontier in Figure 8 corresponds to this restricted economy and shrinks

inwards compared to the baseline economy. The restricted economy operates at 88% of no-tax

output when reducing emissions by 50%, with an implied elasticity between emission reduction

and output of 4.17. This represents an economically significant aggregate output loss of 50% when

compared to the 93.5% of no-tax output in the baseline economy, with an implied elasticity of

7.7. Heterogeneity in fuel productivity diminishes how much output must decrease to achieve any

reduction in emissions. To understand this result better, I decompose the total changes in emissions

from the policy into three channels, following Levinson (2015). First, the scale channel captures

variation in aggregate output. Second, the composition channel captures output reallocation across

plants. Third, the technique channel captures plant-level improvements in emissions intensity, here

within plant fuel substitution.

Figure 9: Decomposition of Emissions Reduction Under Different Levels of Carbon Tax
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Notes: this figure decomposes emissions reduction into three channels following the decomposition method of Levinson
(2015) for different levels of the carbon tax. While the level of the carbon tax is expressed in U.S. dollars, it does not
account for purchase power parity (PPP) differences between India and the United States. For example, the 40 USD
carbon tax is closer to 150 when accounting for PPP differences.

As shown in Figure 9, introducing heterogeneity in fuel productivity creates two countervailing

effects. On the one hand, as long as fuels are gross substitutes (λ > 1), within-plant variation in fuel

productivity induces plants to specialize in different fuels, increasing the opportunity cost of fuel

substitution. This leads to technology lock-in, which is more pronounced for plants relatively more

productive at dirty fuels like coal. The higher fuel productivity varies within plants, the higher this

technology lock-in, and less emissions reduction comes from the technique channel. Substantive

reasons underlying technology lock-in were discussed in Section 6.1. On the other hand, variation

in fuel productivity across plants creates heterogeneity in exposure to the carbon tax. Plants

specializing in dirty fuels become more exposed, and output reallocates towards plants specializing

in cleaner fuels.

To better understand this last point, note that the carbon tax increases the relative price of

dirtier fuels. Plants that are more productive at using dirty fuels face a higher marginal cost

increase from the tax. As a result, these plants pass on a larger portion of the tax to consumers,
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Figure 10: Comparison of Trade-off In-
cluding No Input Substitution

Table 10: Comparison of Average Elasticity

Average Elasticity
%∆CO2e
%∆Y

Baseline Economy 5.46
No Fuel Productivity Heterogeneity 3.89
No Input Substitution 2.48
Fowlie et al. (2016) – U.S. Cement 1.04

Notes: The average elasticity of U.S. Cement plants
is constructed by approximating Figure 2 A (aggre-
gate output capacity) and C (aggregate emissions) in
Fowlie et al. (2016). They do various carbon policy
exercises across different carbon prices. I specifically
approximate their Auctioning policy, which is isomor-
phic to a carbon tax in my context.

making them less competitive. This variation in pass-through leads to a reallocation of output from

dirtier plants to cleaner ones. For derivations, see Appendix D.2.1. In the Indian Steel context, the

emissions reduction gains from output reallocation outweigh the losses from the technique channel.

Therefore, introducing heterogeneity in fuel productivity mitigates the tradeoff between aggregate

output and aggregate emissions reduction.18

To benchmark this result with the literature, I compare the aggregate trade-off between output

and emissions with Fowlie et al. (2016), who conduct similar policy exercises for U.S. cement plants.

Crucially, their margin of interest is establishment entry/exit and dynamic investments in output

capacity. However, they do not allow for input substitution. I show in Table 10 that a version of

my model without input substitution yields an average elasticity between emission reduction and

output more than half as large as in the full model, and closer to Fowlie et al. (2016).19 Comparing

this to the more flexible economy in which plants can substitute at both margins in Figure 10

sheds light on the critical role that input substitution plays in mitigating the loss of output for any

emission reduction target.

In the comparison with Fowlie et al. (2016), one potential concern is that I overestimate the

extent of output reallocation because I do not capture capacity constraints in output, a feature

that is excluded from the ASI dataset. I show that the results presented here hold even when

imposing strict capacity constraints. In particular, I impose that plant-level output must be no

18Importantly, this is not imposed by the model. The opposite outcome is also possible. Consider an economy in
which all firms use the same fuels and have the same fuel productivity. All firms are equally exposed to the tax,
shutting down the output reallocation channel. However, there is still technology lock-in because firms specialize in
their most productive fuels. In such an economy, fuel productivity worsens the trade-off between aggregate output
and aggregate emissions reduction. The same would be true if, instead of shutting down across firms heterogeneity,
we assumed that output varieties were perfect complements.

19Note that a gap remains and the production frontier is still concave without plant-level input substitution. This
is for two reasons. First, even without input substitution, plants are differently affected by the tax based on their
starting fuel set, which affects output reallocation across plants and, consequently, aggregate fuel substitution. Second,
the difference between the two elasticities is also attributed to the entry/exit margin in Fowlie et al. (2016), which
decreases output and emissions through plants exiting in the aftermath of carbon policy.
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greater under a carbon tax than under a no-tax economy. Since the majority of plants that become

more competitive in the aftermath of the tax still produce below their no-tax output, they do not

face their capacity constraints, and results remain quantitatively similar. That is, gains from output

reallocation largely dominate losses from the technique effect. See Figure 11. This is because the

tax increases marginal costs for all plants, pushing down output.

Figure 11: Decomposition of Emissions Reduction — Strict Capacity Constraint
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Notes: this figure decomposes emissions reduction into three channels following the decomposition method of Levinson
(2015) for different levels of the carbon tax. The only difference with Figure 9 is that I impose that plants cannot
increase their level of output following the imposition of a carbon tax.

7.1.2 Ineffectiveness of Carbon Tax at the Extensive Margin

While a carbon tax can cost-effectively reduce emissions through its effect on fuel substitution at

the intensive margin and reallocating output from high-emission to low-emission plants, its effect

on the transition from coal to natural gas at the extensive margin is more limited. Indeed, any

level of the carbon tax leads to a net decrease in the fraction of plants using coal and natural gas.

The reduction in coal is relatively small, as it would take a carbon tax that raises the price of coal

by 400% to incentivize a 10% decrease in the fraction of plants that use coal. Aside from coal

being initially cheap relative to other fuels, this effect is primarily due to the option value that coal

provides. Plants would rather reduce their coal consumption at the intensive margin but keep the

option of using coal for the additional substitution margin it provides.

The lack of natural gas adoption can be partially explained by a combination of facts: the carbon

tax also raises the price of natural gas, the fixed costs of adoption are economically high—especially

for plants away from the pipeline network—and plants that are not currently using natural gas

would be, on average, 30% less productive at it compared to those who already use natural gas. In

the next section, I explore the effectiveness of a subsidy to incentivize natural gas take-up.

7.2 Alleviating Technology Lock-in — Subsidizing Natural Gas Adoption

To complement the carbon tax, I investigate how proceeds from the tax can be used to finance

a subsidy to the fixed cost of natural gas to alleviate technology lock-in and increase natural gas
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take-up. I do these experiments jointly with a carbon tax, and I narrow down on a subsidy covering

10% of the fixed cost of natural gas, which can be fully financed by a carbon tax.20

To choose a representative social cost of carbon (SCC), I first set the social discount rate to

3% (β = 0.97) to match India’s average real interest rate during the sample period. Then, following

the most recent estimates from the Inter-agency Working Group on the Social Cost of Carbon (IWG,

2021), I set the SCC to the 2020 estimates for a social discount rate of 3% at USD 51/tCO2e. This

SCC corresponds to a mid-range estimate in the literature. With such a policy, per-period welfare

is standard and features four components: consumer surplus, producer surplus, net government

revenues, and externality damages (Fowlie et al., 2016):

wt(τ, s) = νt(τ, s)︸ ︷︷ ︸
consumer surplus

+ Π(τ, s)︸ ︷︷ ︸
producer surplus

+ G(τ, s)︸ ︷︷ ︸
net gov. revenue

−
∑
f

∑
i

γfefit(τ, s)︸ ︷︷ ︸
externality damages

,

where consumer surplus is decreasing in the aggregate output price index Pt. This is due to

quasi-linear aggregate utility: νt(τ, s) =
θ

1−θPt(τ, s)
− θ

1−θ . As such, we can think of the remaining

three parts of this welfare function as shifting the aggregate income of the consumers if it owns all

plants and gets aggregate profits net of fixed costs, government revenues as lump-sum transfers, and

suffers externality damages from pollution in dollars from the social cost of carbon. To include a

subsidy towards natural gas adoption, I assume that the subsidy is financed by government revenue

from the carbon tax and that every plant faces the same permanent subsidy amount of s. In this

context, producer surplus is the sum of total profits net of subsidized fixed costs, and net government

revenue is total tax revenues minus subsidy paid out:

Π(τ, s) =
N∑
i=1

(
πit(τ, s)︸ ︷︷ ︸

variable profits

−
∑
F ′⊆F

[
K(F ′ | Fit)− sI(gas ∈ F ′ \ Fit)

]
I(Fit+1 = F ′ | τ, s)︸ ︷︷ ︸

subsidized fixed costs

)

G(τ, s) =

N∑
i=1

(∑
f

τfefit(τ, s)︸ ︷︷ ︸
tax revenue

−
∑
F ′⊆F

sI(gas ∈ Fit+1 \ Fit)I(Fit+1 = F ′ | τ, s)︸ ︷︷ ︸
subsidy

)
.

Note that externality damages cancel out with tax revenue, and the subsidy cancels out because

it is a transfer from G(τ, s) to Π(τ, s). As a result, period welfare is effectively equal to consumer

surplus plus variable profits minus total fixed costs:

20I also investigate what happens under subsidies ranging from 0% to 100% in Online Appendix D.5.
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wt(τ, s) = νt(τ, s)︸ ︷︷ ︸
consumer surplus

+
N∑
i=1

πit(τ, s)︸ ︷︷ ︸
variable profits

−
N∑
i

( ∑
F ′⊆F

K(F ′ | Fit)I(Fit+1 = F ′ | τ, s)
)

︸ ︷︷ ︸
total fixed costs

. (20)

Total welfare is then defined as the net present value of expected period welfare ω(τ, s). I

approximate total welfare by averaging multiple Monte-Carlo simulations of the economy (indexed

by k) over a horizon of 40 years. Lastly, the subsidy rate s was chosen to keep the expected net

government revenues weakly positive.

Table 11: Decomposition of Welfare Effects – Carbon Tax with and without Subsidy

Carbon Tax
Carbon Tax

+ 10% Subsidy
Difference

Billion U.S Dollars Billion U.S Dollars Million U.S. Dollars

Total Welfare 63.415 63.417 1.18

Variable Profit 22.58 22.60 19.18
Consumer Surplus 22.21 22.22 13.62

Total Net Fixed Costs (Paid by plants + subsidy) -18.633 -18.601 31.61
Externality Damages/Tax Revenue 2.64 2.65 9.78

Notes: All welfare components are reported by their net present value (NPV) over a horizon of 40 years from the
last year of observation in the data (2016) with a social discount rate of 3%. Also, externality damages and tax
revenue cancel out in the welfare function. The subsidy also cancels out because it is simply a transfer from net
government revenue towards producer surplus. As a result, variable profits, consumer surplus, and total fixed costs
are the remaining components in the welfare function such that Welfare = ConsumerSurplus+ V ariableProfit−
TotalF ixedCost. Net total fixed costs can be negative because of salvage values firms can get from dropping fuels.

Table 12: Total Subsidy Paid by Government

Carbon Tax
Carbon Tax

+ 10% Subsidy
Difference

Fraction of Gas Users 0.19 0.24 0.05
Total Subsidy paid (Billion U.S. Dollars) 0.0 2.793 2.793

Notes: This table reports the long-run fraction of plants that use natural gas after the policy and the net present
value of the expected total subsidy paid to plants.

Welfare results are shown in Table 11 and 12. In net, there is a positive but small welfare effect

from the subsidy relative to a regime with only a carbon tax. These small welfare effects reflect

important variations within each welfare component. First, the fraction of plants adopting natural

gas goes up by five percentage points, but plants do not drop more polluting fuels. The option value

of natural gas reduces marginal costs for newly adopting plants, pushing down output prices. Lower

marginal costs increase output, variable profits, and consumer surplus by 19 and 13 million dollars,

respectively. However, emissions also increase by an equivalent of 9.8 million dollars in externality

35



damages, as the income effect dominates the substitution effect. Details underlying are the income

and substitution effects are discussed at length in Online Appendix D.5.

Second, while the subsidy’s cost in the government budget gets canceled out with the subsidy’s

revenue in plants’ profit, 99% of these transfers go to inframarginal plants that would’ve adopted

gas in the absence of a subsidy. This can be seen from the increase in total fixed costs paid in the

economy after the subsidy is introduced (31.61 million dollars), which is considerably lower than

the total subsidy dispensed by the government (2.7 billion dollars).

This prevalence of inframarginal plants coupled with a small welfare effect raises the question

of whether the government could find more profitable avenues to alleviate technology lock-in. For

example, it could invest in energy efficiency training programs to increase energy and fuel produc-

tivity or carbon capture technologies that reduce ex-post emissions. Alternatively, following the

footsteps of Belgium, Austria, and others, the government could outright phase out/ban coal. This

paper is well-equipped to handle such a policy. While outside the scope of this paper, this is an

interesting avenue for future research.

8 Conclusion

In conclusion, I develop a rich dynamic production model to study fuel substitution from manufac-

turing establishments. It includes switching between fuel sets at a cost and heterogeneity in fuel

productivity. By combining various methods from the production function estimation and the dy-

namic discrete choice literature, I show how this model can be estimated with a panel of plant-level

data that features output and input prices/quantities. I then apply this model to the Indian Steel

industry, which is high in energy and emission intensity due to the prevalence of coal usage. I then

perform various counterfactual policy experiments to reduce emissions at the lowest cost possible,

including a carbon tax and a carbon tax with a subsidy towards adopting cleaner fuels.

Moreover, I show that novel features of this model have important quantitative implications for

the scope of these policies. Indeed, carbon taxation is much more targeted towards high-emission

plants than previously thought due to multiple layers of heterogeneity. As a result, high-emission

plants become relatively less competitive, reallocating output towards low-emission plants. This

considerably reduces the overall economic cost of reducing emissions. However, more than a carbon

tax is needed to increase adoption of cleaner fuels such as natural gas. For this reason, I show how

proceeds from the carbon tax can be used to subsidize the fixed cost of natural gas adoption. There

is a small but positive welfare effect, unexpectedly through a larger private surplus (producer and

consumer) at the expense of higher emissions. This is due to the option value that an additional

fuel provides, which lowers production costs. However, the welfare effects of the subsidy are minor

compared to its cost. Overall, these results highlight the importance of producer heterogeneity and

inter-temporal decisions when quantifying the impact of carbon policy.
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Bonhomme, Stéphane and Elena Manresa, “Grouped Patterns of Heterogeneity in Panel

Data,” Econometrica, 2015, 83 (3), 1147–1184.

Broda, Christian and David E Weinstein, “Globalization and the Gains from Variety,” The

Quarterly Journal of Economics, 2006, 121 (2), 541–585.

Carlson, Curtis, Dallas Burtraw, Maureen Cropper, and Karen L. Palmer, “Sulfur

Dioxide Control by Electric Utilities: What Are the Gains from Trade?,” Journal of Policial

Economy, 2000, 108 (6).
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Appendices

A Data

A.1 Details on sampling rules

In the ASI, Manufacturing plants are surveyed either as part of a census or as part of a sample. All

plants who qualify for the census are required to fill out the survey by the Government of India’s

Central Statistics Office. The remaining plants are surveyed based on stratified sampling rules.

The definition of census vs. sample and the sampling rules went through some changes over the

years. In 2008, all plants with more than 100 workers and multi-plant firms, as well as plants in

the lesser industrialized states (Manipur, Meghalaya, Nagaland, Tripura, Sikkim, and Andaman

Nicobar Islands), were part of the census. Strata were constructed by state/industry pairs for the

remaining plants, and 20% of plants were sampled within each stratum.

By 2016, the rules for a plant to be considered in the census expanded. Plants in the following

states with more than 75 workers were part of the census: Jammu Kashmir, Himachal Pradesh,

Rajasthan, Bihar, Chhattisgarh, and Kerala. Plants in the following states with more than 50

workers were part of the census: Chandigarh, Delhi, and Puducherry. Plants in the seven less

industrialized states were part of the census: Arunachal Pradesh, Manipur, Meghalaya, Nagaland,

Sikkim, Tripura, and Andaman Nicobar Islands. Lastly, the census included plants with more than

100 workers in all other states.

A.2 Calculating Emissions

To get establishment-level measures of greenhouse gas emissions, I convert units of potential energy

(mmBtu) of each fuel into metric tons of carbon dioxide equivalent (CO2e) as a result of combustion.

Each mmBtu of fuel releases some quantity of carbon dioxide CO2, methane CH4, and nitrous oxide

N2O in the air, which may vary by industry based on standard practices and technology. Emissions

of chemical k for a plant in industry j can be calculated as follows:
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emissionsjk =
∑
f

∑
k

ζfkj ∗ ef

∀ k = {CO2, CH4, N2O} ∀ f = {Natural Gas, Coal, Oil, Electricity}

The fuel-by-industry emission factors of each chemical ζfkj are found in the database provided

by GHG Platform India and come from two main sources: India’s Second Biennial Update Report

(BUR) to United Nations Framework Convention on Climate Change (UNFCCC) and IPCC Guide-

lines. Quantities in mmBtu of each fuel ef are observed for each establishment in each year. Then,

quantities of each chemical are converted into carbon dioxide equivalent CO2e using the Global

Warming Potential (GWP) method as follows:

CO2e = GWPCO2︸ ︷︷ ︸
=1

∗CO2 +GWPch4 ∗ CH4 +GWPn2o ∗N2O

From the calculations above, I can define fuel-specific emission factors that will be used to directly

convert fuels to CO2e (or GHG). For fuel f in industry j (excluding electricity),

γfj = GWPco2 ∗ ζf,co2,j +GWPch4 ∗ ζf,ch4,j +GWPn2o ∗ ζf,n2o,j

Calculations of emissions from electricity are done slightly differently than from fossil fuels be-

cause emissions come from production rather than end usage of electricity. Figure 12 shows that

coal is used to consistently generate above 60% of total electricity in India, which increased in 2010

and started to decrease after 2012.
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Figure 12: Annual Indian Electricity Generation by Source (% of Total)
Source: International Energy Agency (IEA)

43



To construct measures of emissions from electricity, I take the distribution of emissions from

different fuels used to produce electricity, averaged across years for the entire grid. Let ωef ∈ [0, 1]

∀f ∈ {Coal,Gas} be the share of fuel f used to generate electricity across the country, then

γej =
∑

f∈{coal,gas}

ωef ∗ γfj

Where γfj is the emission intensity of fuel f and was defined above.Total GHG emissions for

plant i in industry j and year t is then defined as:

GHGijt = γe ∗ eeijt +
∑

f∈{natgas,coal,oil}

γfj ∗ efijt

Below are the tables detailing emissions factors. Note that for oil, I take the average over all

petroleum fuels. The dispersion between oil types is much lower than the dispersion between the

average of oil and coal/gas.

Emission factors (kg CO2e/mmBtu)

Fuel Industry CO2 CH4 N2O Total (γfj)

Coal

Cement 100.90 0.03 0.42 101.34
Non-ferrous metals 101.67 0.03 0.42 102.11
Pulp and paper 101.59 0.03 0.42 102.04
Electricity generation 102.09 0.03 0.42 102.54
Other 98.84 0.03 0.42 99.29

Oil All 77.34 0.09 0.17 77.59
Natural Gas All 50.64 0.03 0.03 50.70

Table 13: Emission factors from fuels to carbon dioxide equivalent ζfkj ∗GWPk (kg CO2e/mmBtu). Source:
(Gupta et al., 2019, Annexure 3)

Share of Electricity Generated by Source
Natural Gas Coal Hydro Other Emission factor (kg CO2e/mmBtu)

0.052 0.68 0.046 0.23 72.05

Table 14: Emission factors from Electricity

A.3 Additional Evidence

B Model

B.1 Closing the Model: Aggregation details

Given a mass of Nt operating plants, income It and aggregate demand shock eΓt , the representative

consumer solves:
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Steel Product
Fuel Set

oil, elec oil, elec, coal oil, elec, gas oil, elec, gas, coal other Total

Pig iron 50.46 23.39 8.29 5.71 12.15 100
Direct reduced iron 62.42 22.53 4.89 2.31 7.85 100
Ingots 54.12 17.51 9.23 6.76 12.38 100
Ferro-alloy 51.42 24.05 4.91 4.11 15.51 100
Hot and cold-rolled steel 38.32 21.14 15.00 14.80 10.75 100
Tubes 67.97 4.74 15.32 4.46 7.52 100
Wires 70.04 4.61 9.93 1.42 14.01 100
Other 47.59 19.79 10.35 9.96 12.30 100

Table 15: Distribution of Fuels Sets by Steel Variety

max
{Yit}

Nt
i=1,Y0t

U = Y0t +
eΓt

θ

(
1

Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) θρ
ρ−1

s.t. Y0t +

∫
Ωi

PitYitdi ≤ It

(21)

Following Helpman and Itskhoki (2010), this can be separated into two problems. First, the

consumers choose consumption of the aggregate final good Yt, given some aggregate price index Pt

and aggregate demand shock eΓt :

max
Y0t,Yt

Y0t +
eΓt

θ
Y θ
t

s.t. Y0t + PtYt ≤ It

The optimal consumption of the aggregate final good is given by Yt(Pt) =
(
Pt
eΓt

) −1
1−θ

, and con-

sumption of the outside good is given by Y0t(Pt) = It = PtYt(Pt) = It − eΓt
1

1−θP
−θ
1−θ
t . Putting

the two together yields the indirect utility V, which corresponds to the consumer surplus due to

quasi-linear preferences:

V = It +
( 1

1− θ

)
Γ

1
1−θ
t P

−θ
1−θ
t

This is the same indirect utility function as in Helpman and Itskhoki (2010), augmented with

an aggregate demand shock. Consumer surplus is decreasing in the aggregate price index, keeping

income constant. Then, the representative consumer chooses which varieties to allocate for a given

quantitiy of good Yt by minimizing the cost of different varieties:
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min
{Yit}

Nt
i=1

∫
Ωi

PitYit s.t. Yt =

(
1

Nt

∫
Ωi

(NtYit)
ρ−1
ρ di

) ρ
ρ−1

Solving this cost-minimization problem yields the following conditional demand of each varieties:

Yit(Yt) =
Yt
Nt

(Pit
Pt

)−ρ
(22)

Combining both steps together yields the demand for each varieties, corresponding to equation 4 in

the main text:

Yit =
eΓt

1
1−θ

Nt
P
ρ(1−θ)−1

1−θ
t P−ρ

it

Where the aggregate price index is such that
∫
Ωt
PitYitdi = PtYt and is given by Pt =

(
1
Nt

∫
Ωi
P 1−ρ
it

) 1
1−ρ

.

C Identification and Estimation

C.1 Alternative Demand Specification

As a more flexible alternative to a simple CES demand function, I consider a nested CES demand

specification with three nests and an outside option: (1) ρ; across firms within products, (2) γ;

across products within product category, and (3) ϵ; across product category. Steel products and

product categories are classified as follows, directly mapping into the Indian National Industry

Classification.

Product Product Category Share of output

Pig Iron Iron 0.1
Direct reduced iron Iron 0.07
Ingots Semi-finished 0.09
Ferro-alloy Semi-finished 0.05
Hot and cold-rolled steel Semi-finished 0.45
Tubes Finished 0.03
Railway tracks Finished 0.003
Wires Finished 0.2

Table 16: Categorization of Steel Products

The estimating equation then includes the own prices, the aggregate prices of firms producing

the same products, the same product category, and any steel product:
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lnYit = β0 +
ϵ(θ − 1) + 1

θ − 1
lnPt︸︷︷︸

Aggregate price

+ (γ − ϵ)lnPjt︸ ︷︷ ︸
Same Product Cateogry

+ (ρ− γ)lnPsjt︸ ︷︷ ︸
Same product

− ρ lnPit︸ ︷︷ ︸
Own price

+ uit

Elasticity of Substitution Estimate (s.e.)

Across product category ϵ 3.3* (1.4)

Across products within category γ 3.8*** (1.1)

Across plants within product ρ 4.0*** (1.2)

Observations 8,517

Standard errors in parentheses

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 17: Nested CES Demand Estimates

Notes: Aggregate price indices Pt, Pjt, Psjt are constructed for each guess of parameter estimates {ρo, γo, ϵo}. Under
monopolistic competition, individual firms’ demand shocks uit do not affect these aggregate price indices. Own prices
Pit, however, are instrumented with the shift-share cost-shifter of Ganapati et al. (2020).

C.2 Derivation of Estimating Equation for Outer Production Function

Production function:

Yit

Y
= eωit

(
αk

(Kit

K

)σ−1
σ

+ αl

(Lit
L

)σ−1
σ

+ αm

(Mit

M

)σ−1
σ

+ αe

(Eit
E

)σ−1
σ

) ησ
σ−1

(23)

= eωit
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

) ησ
σ−1

(24)

Where I define Xit
X

= X̃it

Assumption 2. Lit,Mit, Eit are flexible inputs

Assumption 3. I observe the quantity for Lit and Kit but only spending for materials and energy:

SMit , SEit

Profit-maximization subject to technology and demand constraint:

max
Lit,Mit,Eit

{
Pit(Yit)Yit − pMitMit − pEitEit − wtLit

}
s.t. Yit = Y eωit

(
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αEẼ
σ−1
σ

it

) ησ
σ−1

Pit(Yit) =

(
eΓt

NtYit

) 1
ρ

P
1+ρ(θ−1)
(θ−1)ρ

t
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First-order conditions:

Mit/Lit:

Mit

M
=
( αL
αM

SMit

SLit

) σ
σ−1 Lit

L
(25)

Eit/Lit:

Eit

E
=
(αL
αE

SEit
SLit

) σ
σ−1 Lit

L
(26)

Lit:

(eΓt
Nt

) 1
ρ
P
ρ(1−θ)−1
(1−θ)ρ

t

ρ− 1

ρ
η(eωitY )

ρ−1
ρ αLL

σ−1
σ

it ces
ρ[σ(η−1)+1]−ησ

(σ−1)ρ

it = SLit

Where cesit =
(
αkK̃

σ−1
σ

it + αlL̃
σ−1
σ

it + αmM̃
σ−1
σ

it + αeẼ
σ−1
σ

it

)
using the FOC for labor, I can solve for total factor productivity eωit :

e
ωit

ρ−1
ρ = Y

ρ−1
ρ

ρ

ρ− 1

1

η

(Nt

eΓt

) 1
ρ
P

1−ρ(1−θ)
(1−θ)ρ

t

SLit

αLL
σ−1
σ

it

ces
ησ−ρ[σ(η−1)+1]

(σ−1)ρ

it (27)

Plug (27) into revenue equation:

Rit = Pit(Yit)Yite
uit

=
(eΓt
Nt

) 1
ρ
P

1+ρ(θ−1)
(θ−1)ρ

t Y
ρ−1
ρ

it euit

=
(eΓt
Nt

) 1
ρ
P

1+ρ(θ−1)
(θ−1)ρ

t

(
eωit
(
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αEẼ
σ−1
σ

it

) ησ
σ−1

) ρ−1
ρ

euit

=
ρ

ρ− 1

1

η

(
αKK̃

σ−1
σ

it + αLL̃
σ−1
σ

it + αMM̃
σ−1
σ

it + αEẼ
σ−1
σ

it

)
euit

Plug ratio of FOCs (25) and (26) into the previous equation:
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Rit =
ρ

ρ− 1

1

η
SLit

(
αk
αL

(K̃it

Lit

)σ−1
σ

+ 1 +
SMit

SLit
+
SEit
SLit

)
euit

=
ρ

ρ− 1

1

η

(
SLit

(
1 +

αk
αL

(K̃it

L̃it

)σ−1
σ
)
+ SMit + SEit

)
euit

Estimating Equation:

lnRit = ln
ρ

ρ− 1
+ ln

1

η
+ ln

(
SLit

(
1 +

αk
αL

(K̃it

L̃it

)σ−1
σ
)
+ SMit + SEit

)
+ uit (28)

C.3 Computational Details on Solving the Dynamic Discrete Choice Model

I show how to iterate over the expected value function W⃗ until || W⃗n+1 − W⃗n || is small enough

with a very large state space, where for any set of states today s,F .

Wn(s,F) = γ + σϵ log

( ∑
F ′∈F

exp
(
π(s,F) + Φ(F ′ | F) + β

∫
Wn(s′,F ′)dF (s′ | s)

)1/σϵ)

To evaluate the expected value function, note that there are originally 12 state variables: prices

and productivity of all 4 fuels, hicks neutral productivity, the price of material inputs, year of

observation, and whether a plan is located near a pipeline. I can reduce the dimension of the

state space to 8 state variables, 2 of which are deterministic and 6 of which follow a Markov

process. The 6 Markovian state variables are hicks-neutral productivity z, price of materials pm,

price/productivity of electricity pe/ψe, price/productivity of oil po/ψo, price/productivity of gas

pg/ψg, and price/productivity of coal pc/ψc, which are allowed to be correlated. Then,

∫
Wn+1(s′,F ′)dF (s′ | s) =

∫
z

∫
pm

∫
pe
ψe

∫
po
ψo

∫
pg
ψg

∫
pc
ψc

Wn

(
z′, p′m

p′e
ψ′
e

,
p′o
ψ′
o

,
p′g
ψ′
g

,
p′c
ψ′
c

,F ′, t, d

)
×

f
z′,p′m,

p′e
ψ′
e
,
p′o
ψ′
o
,
p′g
ψ′
g
,
p′c
ψ′
c

(
z′, p′m,

p′e
ψ′
e

,
p′o
ψ′
o

,
p′g
ψ′
g

,
p′c
ψ′
c

∣∣∣∣∣z, pm, peψe , poψo , pgψg , pcψc
)
dzdpmd pe

ψe
d po
ψo
d pg
ψg

d pc
ψc

Where t corresponds to the year of observation and d is an indicator for access to a natural

gas pipeline. I approximate this high dimensional expected value function by discretizing the state

space and the underlying Markov process. Since most state variables are highly persistent AR(1)
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processes with correlated errors, I use the approach of Farmer and Akira Toda (2017) to discretize

all the state variables into a single grid. Let M be the number of points on each grid. Using this

discretization process, I can then represent the value function as a block matrix W⃗n containing all

state combinations. Let S be the set of all state variable combinations, Γ(s′ | s) be the vector of all

state transition probabilities when starting at state s (in vectorized form), Π be the vector of all

possible profit combinations, K⃗ be the vector of all possible fuel set switching costs. Then

W⃗ ≈ γ + log

( ∑
F ′∈F

exp

(
Π+ K⃗(F ′) + β

[⊗
s∈S

Γ(s′ | s)
]T
W⃗

))
(29)

Lastly, to reduce the computational burden, I iterate over equation (29) by parallelizing across all

possible combinations of starting states using graphics processing units (GPU) Arrays with CUDA.

Computational gains using GPU Arrays are significant over standard CPU parallelization. Detailed

Julia code is available on my GitHub.

C.4 Details of EM Algorithm to recover distribution of fixed costs and compar-

ative advantages

Recall that the full information likelihood is as follows:

lnL(F , s | θ1, θ2) =
n∑
i=1

ln

[∑
k

πk

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µfi = µk; θ1, θ2)

]]
+

n∑
i=1

T∑
t=1

ln f(sit | sit−1; θ2)

=
n∑
i=1

ln

[∑
k

πk

(
T∏
t=1

eυFit+1
(Fit,sit,µi=µk;θ1,θ2)∑

F⊆F e
υF (Fit,sit,µi=µk;θ1,θ2)

)]
+

n∑
i=1

T∑
t=1

ln f(sit | sit−1; θ2).

Initially, the true probability weights πk over the support of the finite mixture are unknown due

to selection, but Arcidiacono and Jones (2003); Arcidiacono and Miller (2011) provides a method

to recover the unselected distribution by sequentially iterating over the fixed costs to maximize the

likelihood and updating the probability weights π0k, π
1
k, π

2
k, ... using an EM algorithm. Following

Bayes’ law, one can show that the solution to this maximum likelihood problem is the same as the

solution to a sequential EM algorithm that uses the posterior conditional probabilities that plant i

is of type k given all observables, including choices made:

50



θ̂1 = argmax
θ1,θ2,π

n∑
i=1

ln

[∑
k

πk

[
T∏
t=1

Pr(Fit+1 | Fit, sit, µi = µk; θ1, θ2)

]]

≡ argmax
θ1

N∑
i=1

T∑
t=1

∑
k

ρ(µk | Fi, si; θ̂1, θ̂2, π̂) lnPr(Fit+1 | Fit, sit, µi = µk; θ1, θ̂2)

Where Fi is the sequence of fuel set choices I observe establishment i making. Using Bayes’ rule,

the conditional probability that plant i is of type k is given by the current guess of the unconditional

probability π̂k weighted by the probability that the plant makes the observed sequence of fuel set

choices conditional being type k:

ρ(µk | Fi, si; θ1, θ2, π̂) =
π̂k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ1, θ2)

]I(Fit=F)
]]

∑
k π̂k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ1, θ2)

]I(Fit=F)
]] (30)

The idea underlying the EM algorithm is to iteratively estimate fixed cost parameters θ1 given

some guess of the distribution of comparative advantages {πk}k – M step, draw new comparative

advantages using Baye’s law from (30), which are used to update the unconditional distribution of

comparative – E step, and repeat this procedure until the likelihood in (18) is minimized.

I experimented with both the Arcidiacono and Jones (2003) version that relies on a nested fixed

point algorithm to update the value function and the Arcidiacono and Miller (2011) that uses the

conditional choice probabilities (CCP) and forward simulations to update the value function. In

the main version of the paper, I am using the nested fixed point version with a large grid for the

state space as discussed in Appendix C.3.

In principle, one can directly estimate both the fixed costs θ1 and the distribution of comparative

advantages from the full information likelihood above. However, this is computationally very ex-

pensive and rarely used in practice. For this reason, Arcidiacono and Jones (2003) use Baye’s law to

show that the first-order conditions of the full information likelihood with respect to all parameters

are the same as the first-order conditions of the posterior likelihood with respect to fixed costs θ1

given some prior guess of the distribution of unobserved heterogeneity. This is the key result that

allows me to use the EM algorithm. Estimation then proceeds iteratively as follows:

1. Estimate the distribution of state variables externally θ̂2. These stay fix throughout the

procedure.

2. Initialize fixed cost parameters θ01 and guess some initial probabilities {π0f1, π02, ..., π0K}. I use
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the distribution of selected random effects to initialize this distribution.

3. Do value function iteration (VFI) to update the expected value function W for all combinations

of state variables conditional on these guesses, where different realizations of the random effects

µk are just another state variable that is fixed over time.

W(s,F,µk; θ
0
1, θ̂2) = γ + σϵ ln

(∑
F ′∈F exp

(
π(s,F) +K(F ′ | F , s; θ01) + β

∫
W (s′,F ′, µk; θ

0
1, θ̂2)dF (s

′ | s; θ̂2)
)1/σϵ)

4. Get posterior conditional probabilities that plant i is of type k, ρ1(µk | Fi, si; θ01, θ̂2, π0),
according to Baye’s law:

ρ1(µk | Fi, si; θ01, θ̂2, π0) =
π0fk

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ

0
1, θ̂2)

]I(Fit=F)
]]

∑
k π

0
k

[∏T
t=1

[∏
F⊆F

[
Pr(Fit | sit, µi = µk; θ

0
1, θ̂2)

]I(Fit=F)
]]

5. E-step: Update the unconditional comparative advantage probabilities as follows:

π1k =

∑n
i=1 ρ

1(µk | Fi, si; θ01, θ̂2, π0)
n

∀k

6. M-step: Find fixed cost parameters θ11 that maximize the (log)-likelihood conditional on

current guess of unconditional and conditional probabilities π1k, ρ
1(µk | .)

7. Repeat 3-6 until the full information likelihood is minimized.

D Counterfactuals

D.1 Discretizing the Process for Fuel Prices and Productivity Separately

The problem to solve is that I need to separate fuel prices from fuel productivity when studying

the impact of a per-unit carbon tax levied on fossil fuels (pfit + τf ) because
pfit+τf
ψfit

=
pfit
ψfit

+
τf
ψfit

Initially, the model is estimated with a process for the log of fuel prices/productivity from

Equation 17, which I discretize into a Markov Chain. The Markov chain is a sequence of fuel

prices/productivity realizations ln
pf1
ψf1

, ln
pf2
ψf2

, ln
pf3
ψf3

, ... such that
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Pr
(
ln
pft+1

ψft+1

∣∣∣ ln pft
ψft

, ln
pft−1

ψft−1
, ln

pft−2

ψft−2
, ...
)
= Pr

(
ln
pft+1

ψft+1

∣∣∣ ln pft
ψft

)
Pr
(
ln
pft+1

ψft+1

∣∣∣ ln pft
ψft

)
> 0 ∀ k

From this Markov chain for fuel price/productivity, I create two Markov Chains: one for prices

ln pf1, ln pf2, ... and one for productivity lnψf1, lnψf2, ... such that

ln pft := ln
pft
ψft

+ lnψft

Pr
(
ln pft+1 | ln pft

)
= Pr

(
lnψft+1 | lnψft

)
= Pr

(
ln
pft+1

ψft+1

∣∣∣ ln pft
ψft

)

To find the grid points that form the grid for fuel prices and fuel productivity, I match the

moments of the newly constructed Markov chains with moments from the distribution of fuel prices,

fuel productivity and other state variables in the data. All the moments I use include the variance of

fuel prices, the variance of fuel productivity, the covariance between fuel prices and fuel productivity,

the covariance between fuel prices and all other states, and the covariance between fuel productivity

and all other states.

D.2 Energy Production Function with Energy Productivity – Identification and

Results

The energy production function is as follows:

Eit = ψEit

( ∑
f∈Fit

βfe
λ−1
λ

fit

) λ
λ−1

∑
f∈{o,g,c,e}

βf = 1

Assuming that the log of energy productivity follows and AR(1) process with year dummies

lnψEit = µψE0 + µψEt + ρψE lnψEit−1 + ϵψEit , the production function can be written in log as

lnEit = µψE0 + µψEt +
λ

λ− 1

( ∑
f∈Fit

βfe
λ−1
λ

fit

)
+ ρψE lnEit−1 − ρψE

λ

λ− 1
ln
( ∑
f∈Fit

βfe
λ−1
λ

fit−1

)
+ ϵψEit

This is very similar to the estimating equation for the fully flexible energy production function

in the main text, where ϵψEit is the innovation to energy productivity between t− 1 and t. As such,
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it is independent of period t− 1 decisions:

E(ϵψEit | Iit−1) = 0

However, this innovation is correlated with fuel choices at t. I instrument fuel choices at t

with aggregate variation in fuel prices due to exogenous reasons such as geopolitical events, which

I interact with the share of each fuel to generate electricity by Indian States. These shift-share

instruments are the same instruments proposed by Ganapati et al. (2020), which I also use to

estimate demand in the main model. Together, these instruments and fuel choices at t − 1 form

a set of moment conditions that satisfy exogeneity and identify the relevant parameters of the

production function: λ, βo, βg, βc, βe. Below are the estimates of the production function:

Table 18: Estimates of Energy Production Function with Energy Productivity

Steel

Elasticity of substitution λ̂ 2.173∗∗∗ (0.240)

Relative productivity of oil β̂o 0.099∗∗∗ (0.011)

Relative productivity of gas β̂g 0.049∗∗∗ (0.012)

Relative productivity of coal β̂c 0.426∗∗∗ (0.033)

Observations 3,459

Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

D.2.1 Elasticity of the Price of Energy with Respect to Relative Fuel Prices

Here, I show that since the carbon tax effectively increases the relative price of dirtier fuels, plants

that are more productive at using dirty fuels are more exposed to the carbon tax. To see this,

let p̃cit = pcit/pgit be the price of coal relative to gas and likewise for relative fuel productivity

ψ̃cit = ψcit/ψgit. Then,

∂ ln pEit
∂ ln p̃cit

=

(
p̃cit/ψ̃cit

)1−λ
∑

f∈Fit
(
p̃fit/ψ̃fit

)1−λ =
pcitecit∑

f∈Fit pfitefit
(31)

Under cost-minimization, the elasticity of the marginal cost of energy with respect to the relative

price of any fuel (e.g. coal relative to gas) is just the plant-specific spending share of that fuel relative

to all fuels. This is an application of the Envelope Theorem. Indeed, The price of energy in the

fully flexible model is as follows:
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pEit =
( ∑
f∈Fit

(
pfit/ψfit

)1−λ) 1
1−λ

and can be written in terms of price ratios for a given fuel (say gas), where p̃fit = pfit/pgit and

likewise for ψ̃fit

pEit = pgit

( ∑
f∈Fit

(
p̃fit/ψ̃fit

)1−λ) 1
1−λ

The the elasticity of this price of energy with respect to relative fuel prices (say coal relative to

gas) is as follows:

∂ ln pEit
∂ ln(pcit/pgit)

=
1

pEit

[
pgit
1− λ

( ∑
f∈Fit

(p̃fit/ψ̃fit)
) λ
λ−1 ∂ exp((1− λ)(ln p̃cit − ln ψ̃cit))

∂ ln pfit

]

=
1

pEit

[
pgit

( ∑
f∈Fit

(p̃fit/ψ̃fit)
) λ
λ−1

(p̃cit/ψ̃cit)
1−λ

]

=
(p̃cit/ψ̃cit)

1−λ∑
f∈Fit(p̃fit/ψ̃fit)

1−λ
=

(pcit/ψcit)
1−λ∑

f∈Fit(pfit/ψfit)
1−λ

Moreover, this elasticity is equal to the spending share of coal relative to all other fuels. To see

this, relative first-order conditions of the cost-minimization problem in (??) for two fuels (c, g) are:

pcit
pgit

=
(ψcitecit
ψgitegit

)− 1
λ ψcit
ψgit

ecit
egit

=
(pgit
pcit

)λ(ψcit
ψgit

)λ−1

Multiplying both sides by relative prices, this yields:

pcitecit
pgitegit

=
(pcit/ψcit)

1−λ

(pgit/ψgit)1−λ

Summing across all relative fuel spending shares yields the elasticity:
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pcitψcit∑
f∈Fit pfitefit

=
(pcit/ψcit)

1−λ∑
f∈Fit(pfit/ψfit)

1−λ

Most importantly, this elasticity is increasing in relative fuel productivity. This means that

conditional on fuel prices and fuel set, plants that are more productive at using coal spend more on

coal and are more sensitive to relative changes in the price of coal:

∂2 ln pEit
∂ ln p̃cit∂ψ̃cit

=
(λ− 1)ψλ−2

cit p̃
1−λ
cit

[∑
f∈Fit\c

(
p̃fit/ψ̃fit

)]
(∑

f∈Fit(p̃fit/ψ̃fit)
1−λ
)2 > 0 if λ > 1

In contrast, in the economy without fuel-specific productivity, the elasticity of the price of energy

with respect to relative fuel prices is constant up to fuel prices and fuel sets.
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